Suppr超能文献

通过虚拟筛选和体外评估鉴定新型 CB2 配体。

Identification of Novel CB2 Ligands through Virtual Screening and In Vitro Evaluation.

机构信息

Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.

Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.

出版信息

J Chem Inf Model. 2023 Feb 13;63(3):1012-1027. doi: 10.1021/acs.jcim.2c01503. Epub 2023 Jan 24.

Abstract

Cannabinoid receptor type 2 (CB2) is a very promising therapeutic target for a variety of potential indications. However, despite the existence of multiple high affinity CB2 ligands, none have yet been approved as a drug. Therefore, it would be beneficial to explore new chemotypes of CB2 ligands. The recent elucidation of CB2 tertiary structure allows for rational hit identification with structure-based (SB) methods. In this study, we established a virtual screening workflow based on SB techniques augmented with ligand-based ones, including molecular docking, MM-GBSA binding energy calculations, pharmacophore screening, and QSAR. We screened nearly 7 million drug-like, commercially available compounds. We selected 16 molecules for in vitro evaluation and identified two novel, selective CB2 antagonists with values of 65 and 210 nM. Both compounds are structurally diverse from CB2 ligands known to date. The established virtual screening protocol may prove useful for hit identification for CB2 and similar molecular targets. The two novel CB2 ligands provide a desired starting point for future optimization and development of potential drugs.

摘要

大麻素受体 2 型(CB2)是多种潜在适应症极具前景的治疗靶点。然而,尽管存在多种高亲和力 CB2 配体,但没有一种被批准为药物。因此,探索新型 CB2 配体的化学型将是有益的。最近 CB2 三级结构的阐明使得基于结构的(SB)方法可以进行合理的命中识别。在这项研究中,我们建立了一个基于 SB 技术的虚拟筛选工作流程,该技术辅以基于配体的方法,包括分子对接、MM-GBSA 结合能计算、药效团筛选和 QSAR。我们筛选了近 700 万个具有药物样特性的商业可得化合物。我们选择了 16 种分子进行体外评估,并鉴定出两种新型、选择性 CB2 拮抗剂,其 值分别为 65 和 210 nM。这两种化合物在结构上与迄今为止已知的 CB2 配体不同。所建立的虚拟筛选方案可能对 CB2 和类似分子靶标中的命中识别有用。这两种新型 CB2 配体为未来的优化和潜在药物的开发提供了理想的起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad42/9930120/ad3595012da4/ci2c01503_0001.jpg

相似文献

1
Identification of Novel CB2 Ligands through Virtual Screening and In Vitro Evaluation.
J Chem Inf Model. 2023 Feb 13;63(3):1012-1027. doi: 10.1021/acs.jcim.2c01503. Epub 2023 Jan 24.
3
Virtual screening using docking and molecular dynamics of cannabinoid analogs against CB and CB receptors.
Comput Biol Chem. 2021 Dec;95:107590. doi: 10.1016/j.compbiolchem.2021.107590. Epub 2021 Oct 12.
4
7-Azaindolequinuclidinones (7-AIQD): A novel class of cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor ligands.
Bioorg Med Chem Lett. 2020 Nov 15;30(22):127501. doi: 10.1016/j.bmcl.2020.127501. Epub 2020 Aug 31.
9
Cannabinoid Receptor Type II Ligands from Sandalwood Oil and Synthetic α-Santalol Derivatives.
J Nat Prod. 2023 Jul 28;86(7):1786-1792. doi: 10.1021/acs.jnatprod.3c00282. Epub 2023 Jul 14.

本文引用的文献

2
Identification of CB1 Ligands among Drugs, Phytochemicals and Natural-Like Compounds: Virtual Screening and In Vitro Verification.
ACS Chem Neurosci. 2022 Oct 19;13(20):2991-3007. doi: 10.1021/acschemneuro.2c00502. Epub 2022 Oct 5.
3
Developing the Cannabinoid Receptor 2 (CB2) pharmacopoeia: past, present, and future.
Trends Pharmacol Sci. 2022 Sep;43(9):754-771. doi: 10.1016/j.tips.2022.06.010. Epub 2022 Jul 26.
4
PubChem in 2021: new data content and improved web interfaces.
Nucleic Acids Res. 2021 Jan 8;49(D1):D1388-D1395. doi: 10.1093/nar/gkaa971.
5
Structural and Functional Insights into Cannabinoid Receptors.
Trends Pharmacol Sci. 2020 Sep;41(9):665-677. doi: 10.1016/j.tips.2020.06.010. Epub 2020 Jul 29.
6
Cannabinoids and Cannabinoid Receptors: The Story so Far.
iScience. 2020 Jul 24;23(7):101301. doi: 10.1016/j.isci.2020.101301. Epub 2020 Jun 20.
7
Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders.
Acta Pharm Sin B. 2020 Apr;10(4):582-602. doi: 10.1016/j.apsb.2019.10.006. Epub 2019 Oct 18.
8
A Guide to Targeting the Endocannabinoid System in Drug Design.
Int J Mol Sci. 2020 Apr 16;21(8):2778. doi: 10.3390/ijms21082778.
10
Current Trends, Overlooked Issues, and Unmet Challenges in Virtual Screening.
J Chem Inf Model. 2020 Sep 28;60(9):4112-4115. doi: 10.1021/acs.jcim.9b01101. Epub 2020 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验