Suppr超能文献

一种膜网状结构——中心体,影响秀丽隐杆线虫中心体的大小和功能。

A membrane reticulum, the centriculum, affects centrosome size and function in Caenorhabditis elegans.

机构信息

The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA.

Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.

出版信息

Curr Biol. 2023 Mar 13;33(5):791-806.e7. doi: 10.1016/j.cub.2022.12.059. Epub 2023 Jan 23.

Abstract

Centrosomes are cellular structures that nucleate microtubules. At their core is a pair of centrioles that recruit pericentriolar material (PCM). Although centrosomes are considered membraneless organelles, in many cell types, including human cells, centrosomes are surrounded by endoplasmic reticulum (ER)-derived membranes of unknown structure and function. Using volume electron microscopy (vEM), we show that centrosomes in the Caenorhabditis elegans (C. elegans) early embryo are surrounded by a three-dimensional (3D), ER-derived membrane reticulum that we call the centriculum, for centrosome-associated membrane reticulum. The centriculum is adjacent to the nuclear envelope in interphase and early mitosis and fuses with the fenestrated nuclear membrane at metaphase. Centriculum formation is dependent on the presence of an underlying centrosome and on microtubules. Conversely, increasing centriculum size by genetic means led to the expansion of the PCM, increased microtubule nucleation capacity, and altered spindle width. The effect of the centriculum on centrosome function suggests that in the C. elegans early embryo, the centrosome is not membraneless. Rather, it is encased in a membrane meshwork that affects its properties. We provide evidence that the centriculum serves as a microtubule "filter," preventing the elongation of a subset of microtubules past the centriculum. Finally, we propose that the fusion between the centriculum and the nuclear membrane contributes to nuclear envelope breakdown by coupling spindle elongation to nuclear membrane fenestration.

摘要

中心体是起始微管的细胞结构。其核心是一对中心粒,能募集中心粒周围物质(PCM)。尽管中心体被认为是无膜细胞器,但在许多细胞类型中,包括人类细胞,中心体被内质网(ER)衍生的膜所包围,这些膜的结构和功能尚不清楚。我们使用体积电子显微镜(vEM)发现,秀丽隐杆线虫(C. elegans)早期胚胎中的中心体被一个三维的、由 ER 衍生的膜网络所包围,我们将其称为 centriculum,即与中心体相关的膜网络。在间期和早期有丝分裂中,centriculum 与核膜相邻,并在中期与有孔核膜融合。centriculum 的形成依赖于中心体的存在和微管。相反,通过遗传手段增加 centriculum 的大小会导致 PCM 的扩大、微管成核能力的增加以及纺锤体宽度的改变。centriculum 对中心体功能的影响表明,在 C. elegans 早期胚胎中,中心体并不是无膜的。相反,它被包裹在一个影响其特性的膜网格中。我们提供的证据表明,centriculum 充当了微管的“过滤器”,阻止了一部分微管延伸到 centriculum 之外。最后,我们提出 centriculum 与核膜的融合通过将纺锤体的延伸与核膜的孔化偶联,有助于核膜的破裂。

相似文献

1
A membrane reticulum, the centriculum, affects centrosome size and function in Caenorhabditis elegans.
Curr Biol. 2023 Mar 13;33(5):791-806.e7. doi: 10.1016/j.cub.2022.12.059. Epub 2023 Jan 23.
2
Molecular architectures of centrosomes in C. elegans embryos visualized by cryo-electron tomography.
Dev Cell. 2025 Mar 24;60(6):885-900.e5. doi: 10.1016/j.devcel.2024.12.002. Epub 2024 Dec 24.
3
Differential Requirements for Centrioles in Mitotic Centrosome Growth and Maintenance.
Dev Cell. 2019 Aug 5;50(3):355-366.e6. doi: 10.1016/j.devcel.2019.06.004. Epub 2019 Jul 11.
6
Centriolar SAS-5 is required for centrosome duplication in C. elegans.
Nat Cell Biol. 2004 Jul;6(7):656-64. doi: 10.1038/ncb1146.
7
PCMD-1 bridges the centrioles and the pericentriolar material scaffold in C. elegans.
Development. 2021 Oct 15;148(20). doi: 10.1242/dev.198416. Epub 2021 Oct 19.
8
The Centrosome Is a Selective Condensate that Nucleates Microtubules by Concentrating Tubulin.
Cell. 2017 Jun 1;169(6):1066-1077.e10. doi: 10.1016/j.cell.2017.05.028.
9
Protein phosphatase 4 is required for centrosome maturation in mitosis and sperm meiosis in C. elegans.
J Cell Sci. 2002 Apr 1;115(Pt 7):1403-10. doi: 10.1242/jcs.115.7.1403.
10
Centrosome size is controlled by centriolar SAS-4.
Trends Cell Biol. 2003 Jul;13(7):340-3. doi: 10.1016/s0962-8924(03)00126-0.

引用本文的文献

1
The centriculum, a membrane that surrounds centrosomes, acts as a microtubule filter.
bioRxiv. 2025 Aug 18:2025.08.16.670680. doi: 10.1101/2025.08.16.670680.
2
Long-term culture of Caenorhabditis elegans embryos.
bioRxiv. 2025 Aug 28:2025.06.26.661779. doi: 10.1101/2025.06.26.661779.
3
Design principles and feedback mechanisms in organelle size control.
Curr Opin Cell Biol. 2025 Aug;95:102533. doi: 10.1016/j.ceb.2025.102533. Epub 2025 May 21.
4
Centrosomes and cilia in neurodegeneration: main actors or mere spectators?
Open Biol. 2025 May;15(5):240317. doi: 10.1098/rsob.240317. Epub 2025 May 21.
5
Mitotic spindle membranes.
Mol Biol Cell. 2025 Apr 1;36(4):re1. doi: 10.1091/mbc.E24-10-0475.
6
Molecular architectures of centrosomes in C. elegans embryos visualized by cryo-electron tomography.
Dev Cell. 2025 Mar 24;60(6):885-900.e5. doi: 10.1016/j.devcel.2024.12.002. Epub 2024 Dec 24.
8
Maintenance of germline stem cell homeostasis despite severe nuclear distortion.
Dev Biol. 2024 Nov;515:139-150. doi: 10.1016/j.ydbio.2024.07.009. Epub 2024 Jul 20.
9
Native molecular architectures of centrosomes in embryos.
bioRxiv. 2024 Apr 3:2024.04.03.587742. doi: 10.1101/2024.04.03.587742.
10
Sculpting nuclear envelope identity from the endoplasmic reticulum during the cell cycle.
Nucleus. 2024 Dec;15(1):2299632. doi: 10.1080/19491034.2023.2299632. Epub 2024 Jan 18.

本文引用的文献

1
Endoplasmic reticulum membranes are continuously required to maintain mitotic spindle size and forces.
Life Sci Alliance. 2022 Nov 15;6(1). doi: 10.26508/lsa.202201540. Print 2023 Jan.
3
The ESCRT machinery directs quality control over inner nuclear membrane architecture.
Cell Rep. 2022 Jan 18;38(3):110263. doi: 10.1016/j.celrep.2021.110263.
4
Endogenous expression and localization of HIS-72::mTurquoise2 in .
MicroPubl Biol. 2021 Sep 29;2021. doi: 10.17912/micropub.biology.000471. eCollection 2021.
5
Biophysical and Quantitative Principles of Centrosome Biogenesis and Structure.
Annu Rev Cell Dev Biol. 2021 Oct 6;37:43-63. doi: 10.1146/annurev-cellbio-120219-051400. Epub 2021 Jul 27.
6
Condensation of pericentrin proteins in human cells illuminates phase separation in centrosome assembly.
J Cell Sci. 2021 Jul 15;134(14). doi: 10.1242/jcs.258897. Epub 2021 Jul 26.
7
Semi-automatic stitching of filamentous structures in image stacks from serial-section electron tomography.
J Microsc. 2021 Oct;284(1):25-44. doi: 10.1111/jmi.13039. Epub 2021 Jul 9.
10
Visualizing the metazoan proliferation-quiescence decision in vivo.
Elife. 2020 Dec 22;9:e63265. doi: 10.7554/eLife.63265.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验