文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多胺代谢影响 HIV 感染者口腔黏膜 T 细胞功能障碍。

Polyamine metabolism impacts T cell dysfunction in the oral mucosa of people living with HIV.

机构信息

Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.

Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.

出版信息

Nat Commun. 2023 Jan 25;14(1):399. doi: 10.1038/s41467-023-36163-2.


DOI:10.1038/s41467-023-36163-2
PMID:36693889
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9873639/
Abstract

Metabolic changes in immune cells contribute to both physiological and pathophysiological outcomes of immune reactions. Here, by comparing protein expression, transcriptome, and salivary metabolome profiles of uninfected and HIV+ individuals, we found perturbations of polyamine metabolism in the oral mucosa of HIV+ patients. Mechanistic studies using an in vitro human tonsil organoid infection model revealed that HIV infection of T cells also resulted in increased polyamine synthesis, which was dependent on the activities of caspase-1, IL-1β, and ornithine decarboxylase-1. HIV-1 also led to a heightened expression of polyamine synthesis intermediates including ornithine decarboxylase-1 as well as an elevated dysfunctional regulatory T cell (T)/T helper 17 (Th17) cell ratios. Blockade of caspase-1 and polyamine synthesis intermediates reversed the T phenotype showing the direct role of polyamine pathway in altering T cell functions during HIV-1 infection. Lastly, oral mucosal T/Th17 ratios and CD4 hyperactivation positively correlated with salivary putrescine levels, which were found to be elevated in the saliva of HIV+ patients. Thus, by revealing the role of aberrantly increased polyamine synthesis during HIV infection, our study unveils a mechanism by which chronic viral infections could drive distinct T cell effector programs and T dysfunction.

摘要

免疫细胞的代谢变化既有助于免疫反应的生理结果,也有助于其病理生理结果。在这里,我们通过比较未感染和 HIV+个体的免疫细胞的蛋白质表达、转录组和唾液代谢组谱,发现 HIV+患者口腔黏膜中多胺代谢发生了紊乱。使用体外人扁桃体类器官感染模型的机制研究表明,T 细胞感染 HIV 也会导致多胺合成增加,这依赖于半胱天冬酶-1、IL-1β 和鸟氨酸脱羧酶-1 的活性。HIV-1 还导致多胺合成中间产物包括鸟氨酸脱羧酶-1的表达升高,以及功能失调的调节性 T 细胞(T)/辅助性 T 细胞 17(Th17)细胞比值升高。阻断半胱天冬酶-1 和多胺合成中间产物可逆转 T 表型,表明多胺途径在 HIV-1 感染期间改变 T 细胞功能方面具有直接作用。最后,口腔黏膜 T/Th17 比值和 CD4 过度激活与唾液腐胺水平呈正相关,而 HIV+患者的唾液中发现腐胺水平升高。因此,通过揭示 HIV 感染期间异常增加的多胺合成的作用,我们的研究揭示了慢性病毒感染如何驱动不同的 T 细胞效应程序和 T 细胞功能障碍的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/fcbd43f8f9d1/41467_2023_36163_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/8e10a9f4dbbf/41467_2023_36163_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/e715ef7f196f/41467_2023_36163_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/5c556e2c695b/41467_2023_36163_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/461a793b3265/41467_2023_36163_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/955b93b6d2e1/41467_2023_36163_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/9da2616f2b3d/41467_2023_36163_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/7d92d84f3e83/41467_2023_36163_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/59bae0f7c5de/41467_2023_36163_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/fcbd43f8f9d1/41467_2023_36163_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/8e10a9f4dbbf/41467_2023_36163_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/e715ef7f196f/41467_2023_36163_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/5c556e2c695b/41467_2023_36163_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/461a793b3265/41467_2023_36163_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/955b93b6d2e1/41467_2023_36163_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/9da2616f2b3d/41467_2023_36163_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/7d92d84f3e83/41467_2023_36163_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/59bae0f7c5de/41467_2023_36163_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/9873639/fcbd43f8f9d1/41467_2023_36163_Fig9_HTML.jpg

相似文献

[1]
Polyamine metabolism impacts T cell dysfunction in the oral mucosa of people living with HIV.

Nat Commun. 2023-1-25

[2]
Oral immune dysfunction is associated with the expansion of FOXP3PD-1Amphiregulin T cells during HIV infection.

Nat Commun. 2021-8-26

[3]
Pneumocystis mediates overexpression of antizyme inhibitor resulting in increased polyamine levels and apoptosis in alveolar macrophages.

J Biol Chem. 2009-3-20

[4]
Uptake of polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effect on ornithine decarboxylase activity.

J Plant Physiol. 2004-1

[5]
Differential effect on polyamine metabolism in mitogen- and superantigen-activated human T-cells.

Biochim Biophys Acta. 1998-10-23

[6]
Polyamine metabolism in different pathological states of the brain.

Mol Chem Neuropathol. 1992-6

[7]
Polyamine pools in HIV-infected cells.

J Acquir Immune Defic Syndr Hum Retrovirol. 1998-2-1

[8]
Increased ornithine decarboxylase activity and polyamine biosynthesis are required for optimal cytolytic T lymphocyte induction.

Cell Immunol. 1987-3

[9]
Polyamine metabolism in carcinoma of the oral cavity compared with adjacent and normal oral mucosa.

Am J Surg. 1987-10

[10]
Polyamine deprivation prevents the development of tumour-induced immune suppression.

Br J Cancer. 1997

引用本文的文献

[1]
Defence Warriors: Exploring the crosstalk between polyamines and oxidative stress during microbial pathogenesis.

Redox Biol. 2025-6

[2]
Mechanisms of metabolism-coupled protein modifications.

Nat Chem Biol. 2025-1-7

[3]
Polyamines: Key Players in Immunometabolism and Immune Regulation.

J Cell Immunol. 2024

[4]
Closing the Knowledge Gap of Post-Acquisition Sample Normalization in Untargeted Metabolomics.

ACS Meas Sci Au. 2024-10-14

[5]
Lyophilized T Cell Reference Materials with Quantified Proportions of Subtypes.

ACS Omega. 2024-11-25

[6]
The microbiome diversifies -acyl lipid pools - including short-chain fatty acid-derived compounds.

bioRxiv. 2024-11-2

[7]
Neuroimmune cell interactions and chronic infections in oral cancers.

Front Med (Lausanne). 2024-7-10

[8]
Enzymatic-related network of catalysis, polyamine, and tumors for acetylpolyamine oxidase: from calculation to experiment.

Chem Sci. 2023-12-29

[9]
Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review.

Trop Med Infect Dis. 2024-1-4

[10]
Critical Factors in Sample Collection and Preparation for Clinical Metabolomics of Underexplored Biological Specimens.

Metabolites. 2024-1-5

本文引用的文献

[1]
Essential Fatty Acids and Their Metabolites in the Pathobiology of Inflammation and Its Resolution.

Biomolecules. 2021-12-14

[2]
Oral immune dysfunction is associated with the expansion of FOXP3PD-1Amphiregulin T cells during HIV infection.

Nat Commun. 2021-8-26

[3]
Polyamine metabolism is a central determinant of helper T cell lineage fidelity.

Cell. 2021-8-5

[4]
Metabolic modeling of single Th17 cells reveals regulators of autoimmunity.

Cell. 2021-8-5

[5]
Regulation of Tissue Inflammation by 12-Lipoxygenases.

Biomolecules. 2021-5-11

[6]
CD4 T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria.

J Allergy Clin Immunol. 2021-7

[7]
Hypoxia-inducible factor-1 drives divergent immunomodulatory functions in the pathogenesis of autoimmune diseases.

Immunology. 2021-9

[8]
Effect of HIV/HAART and Other Clinical Variables on the Oral Mycobiome Using Multivariate Analyses.

mBio. 2021-3-23

[9]
NLRP3 inflammasome induces CD4+ T cell loss in chronically HIV-1-infected patients.

J Clin Invest. 2021-3-15

[10]
Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets.

Signal Transduct Target Ther. 2021-2-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索