文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁场和氧化铁纳米颗粒通过 p38 MAPK 通路转染 miR-21 促进骨生成和血管生成从而促进脊柱融合。

Magnetofection of miR-21 promoted by electromagnetic field and iron oxide nanoparticles via the p38 MAPK pathway contributes to osteogenesis and angiogenesis for intervertebral fusion.

机构信息

Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.

出版信息

J Nanobiotechnology. 2023 Jan 25;21(1):27. doi: 10.1186/s12951-023-01789-3.


DOI:10.1186/s12951-023-01789-3
PMID:36694219
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9875474/
Abstract

BACKGROUND: Magnetofection-mediated gene delivery shows great therapeutic potential through the regulation of the direction and degree of differentiation. Lumbar degenerative disc disease (DDD) is a serious global orthopaedic problem. However, even though intervertebral fusion is the gold standard for the treatment of DDD, its therapeutic effect is unsatisfactory. Here, we described a novel magnetofection system for delivering therapeutic miRNAs to promote osteogenesis and angiogenesis in patients with lumbar DDD. RESULTS: Co-stimulation with electromagnetic field (EMF) and iron oxide nanoparticles (IONPs) enhanced magnetofection efficiency significantly. Moreover, in vitro, magnetofection of miR-21 into bone marrow mesenchymal stem cells (BMSCs) and human umbilical endothelial cells (HUVECs) influenced their cellular behaviour and promoted osteogenesis and angiogenesis. Then, gene-edited seed cells were planted onto polycaprolactone (PCL) and hydroxyapatite (HA) scaffolds (PCL/HA scaffolds) and evolved into the ideal tissue-engineered bone to promote intervertebral fusion. Finally, our results showed that EMF and polyethyleneimine (PEI)@IONPs were enhancing transfection efficiency by activating the p38 MAPK pathway. CONCLUSION: Our findings illustrate that a magnetofection system for delivering miR-21 into BMSCs and HUVECs promoted osteogenesis and angiogenesis in vitro and in vivo and that magnetofection transfection efficiency improved significantly under the co-stimulation of EMF and IONPs. Moreover, it relied on the activation of p38 MAPK pathway. This magnetofection system could be a promising therapeutic approach for various orthopaedic diseases.

摘要

背景:磁转染介导的基因传递通过调节分化的方向和程度显示出巨大的治疗潜力。腰椎退行性椎间盘疾病(DDD)是一个严重的全球骨科问题。然而,尽管椎间融合术是治疗 DDD 的金标准,但治疗效果并不理想。在这里,我们描述了一种新的磁转染系统,用于递送治疗性 microRNA,以促进腰椎 DDD 患者的成骨和血管生成。

结果:电磁场(EMF)和氧化铁纳米粒子(IONP)的共刺激显著提高了磁转染效率。此外,在体外,将 miR-21 转染到骨髓间充质干细胞(BMSC)和人脐静脉内皮细胞(HUVEC)中,影响其细胞行为,并促进成骨和血管生成。然后,基因编辑的种子细胞种植到聚己内酯(PCL)和羟基磷灰石(HA)支架(PCL/HA 支架)上,并演变成理想的组织工程骨,以促进椎骨融合。最后,我们的结果表明,EMF 和聚乙烯亚胺(PEI)@IONP 通过激活 p38 MAPK 通路增强转染效率。

结论:我们的研究结果表明,将 miR-21 递送到 BMSC 和 HUVEC 中的磁转染系统在体外和体内均促进了成骨和血管生成,并且在 EMF 和 IONP 的共刺激下,磁转染的转染效率显著提高。此外,它依赖于 p38 MAPK 通路的激活。这种磁转染系统可能是治疗各种骨科疾病的有前途的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/e1386ec722d2/12951_2023_1789_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/41d4549b3ec7/12951_2023_1789_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/07a90705955d/12951_2023_1789_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/6f887191f81d/12951_2023_1789_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/6312e4893484/12951_2023_1789_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/cf988caa7406/12951_2023_1789_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/c7ece6f107f5/12951_2023_1789_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/44addd41aa97/12951_2023_1789_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/e1386ec722d2/12951_2023_1789_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/41d4549b3ec7/12951_2023_1789_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/07a90705955d/12951_2023_1789_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/6f887191f81d/12951_2023_1789_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/6312e4893484/12951_2023_1789_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/cf988caa7406/12951_2023_1789_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/c7ece6f107f5/12951_2023_1789_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/44addd41aa97/12951_2023_1789_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b494/9875474/e1386ec722d2/12951_2023_1789_Fig8_HTML.jpg

相似文献

[1]
Magnetofection of miR-21 promoted by electromagnetic field and iron oxide nanoparticles via the p38 MAPK pathway contributes to osteogenesis and angiogenesis for intervertebral fusion.

J Nanobiotechnology. 2023-1-25

[2]
Low-frequency electromagnetic fields combined with tissue engineering techniques accelerate intervertebral fusion.

Stem Cell Res Ther. 2021-2-17

[3]
Sinusoidal electromagnetic fields accelerate bone regeneration by boosting the multifunctionality of bone marrow mesenchymal stem cells.

Stem Cell Res Ther. 2021-4-13

[4]
The combinatory effect of sinusoidal electromagnetic field and VEGF promotes osteogenesis and angiogenesis of mesenchymal stem cell-laden PCL/HA implants in a rat subcritical cranial defect.

Stem Cell Res Ther. 2019-12-16

[5]
Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.

Tissue Eng Part A. 2022-2

[6]
Zinc Silicate/Nano-Hydroxyapatite/Collagen Scaffolds Promote Angiogenesis and Bone Regeneration via the p38 MAPK Pathway in Activated Monocytes.

ACS Appl Mater Interfaces. 2020-4-8

[7]
Bone mesenchymal stem cell-derived extracellular vesicles promote the repair of intervertebral disc degeneration by transferring microRNA-199a.

Cell Cycle. 2021-2

[8]
Magnetofection and isolation of DNA using polyethyleneimine functionalized magnetic iron oxide nanoparticles.

R Soc Open Sci. 2018-12-12

[9]
Effects of electromagnetic fields treatment on rat critical-sized calvarial defects with a 3D-printed composite scaffold.

Stem Cell Res Ther. 2020-10-6

[10]
Enhanced osteogenesis of bone marrow stem cells cultured on hydroxyapatite/collagen I scaffold in the presence of low-frequency magnetic field.

J Mater Sci Mater Med. 2019-7-24

引用本文的文献

[1]
Engineering 3D-BMSC exosome-based hydrogels that collaboratively regulate bone microenvironment and promote osteogenesis for enhanced cell-free bone regeneration.

Mater Today Bio. 2025-5-20

[2]
Unveiling the Power of Magnetic-Driven Regenerative Medicine: Bone Regeneration and Functional Reconstruction.

Research (Wash D C). 2025-5-22

[3]
Critical roles of miR-21 in promotions angiogenesis: friend or foe?

Clin Exp Med. 2025-2-25

[4]
Targeting ferroptosis to enhance the efficacy of mesenchymal stem cell-based treatments for intervertebral disc degeneration.

Int J Biol Sci. 2025-1-20

[5]
Improved Biomineralization Using Cellulose Acetate/Magnetic Nanoparticles Composite Membranes.

Polymers (Basel). 2025-1-15

[6]
NQO1 promotes osteogenesis and suppresses angiogenesis in DPSCs via MAPK pathway modulation.

Stem Cell Res Ther. 2024-9-16

[7]
Energizing Healing with Electromagnetic Field Therapy in Musculoskeletal Disorders.

J Orthop Sports Med. 2024

[8]
Bioengineered mesenchymal stem cell-derived exosomes: emerging strategies for diabetic wound healing.

Burns Trauma. 2024-7-16

[9]
Investigation on the molecular mechanism of SPA interference with osteogenic differentiation of bone marrow mesenchymal stem cells.

Sci Rep. 2024-7-6

[10]
Effective delivery of miR-150-5p with nucleus pulposus cell-specific nanoparticles attenuates intervertebral disc degeneration.

J Nanobiotechnology. 2024-5-27

本文引用的文献

[1]
miRNA induced 3D bioprinted-heterotypic osteochondral interface.

Biofabrication. 2022-8-17

[2]
Pro-angiognetic and pro-osteogenic effects of human umbilical cord mesenchymal stem cell-derived exosomal miR-21-5p in osteonecrosis of the femoral head.

Cell Death Discov. 2022-4-25

[3]
Bioswitchable Delivery of microRNA by Framework Nucleic Acids: Application to Bone Regeneration.

Small. 2021-11

[4]
Mechanism of p38 MAPK-induced EGFR endocytosis and its crosstalk with ligand-induced pathways.

J Cell Biol. 2021-7-5

[5]
Umbilical Mesenchymal Stem Cell-Derived Exosome-Encapsulated Hydrogels Accelerate Bone Repair by Enhancing Angiogenesis.

ACS Appl Mater Interfaces. 2021-4-28

[6]
Sinusoidal electromagnetic fields accelerate bone regeneration by boosting the multifunctionality of bone marrow mesenchymal stem cells.

Stem Cell Res Ther. 2021-4-13

[7]
Low-frequency electromagnetic fields combined with tissue engineering techniques accelerate intervertebral fusion.

Stem Cell Res Ther. 2021-2-17

[8]
Cell-based strategies for IVD repair: clinical progress and translational obstacles.

Nat Rev Rheumatol. 2021-3

[9]
Effects of electromagnetic fields treatment on rat critical-sized calvarial defects with a 3D-printed composite scaffold.

Stem Cell Res Ther. 2020-10-6

[10]
miR-21 promotes osseointegration and mineralization through enhancing both osteogenic and osteoclastic expression.

Mater Sci Eng C Mater Biol Appl. 2020-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索