文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

线粒体铁氧还蛋白样蛋白对于拟南芥中形成含有复合体 I 的超级复合物是必需的。

Mitochondrial ferredoxin-like is essential for forming complex I-containing supercomplexes in Arabidopsis.

机构信息

Department of Plant Physiology, Institute of Biology, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany.

Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Interactions Arbres-Microorganismes (IAM), Université de Lorraine, F-54000 Nancy, France.

出版信息

Plant Physiol. 2023 Apr 3;191(4):2170-2184. doi: 10.1093/plphys/kiad040.


DOI:10.1093/plphys/kiad040
PMID:36695030
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10069907/
Abstract

In eukaryotes, mitochondrial ATP is mainly produced by the oxidative phosphorylation (OXPHOS) system, which is composed of 5 multiprotein complexes (complexes I-V). Analyses of the OXPHOS system by native gel electrophoresis have revealed an organization of OXPHOS complexes into supercomplexes, but their roles and assembly pathways remain unclear. In this study, we characterized an atypical mitochondrial ferredoxin (mitochondrial ferredoxin-like, mFDX-like). This protein was previously found to be part of the bridge domain linking the matrix and membrane arms of the complex I. Phylogenetic analysis suggested that the Arabidopsis (Arabidopsis thaliana) mFDX-like evolved from classical mitochondrial ferredoxins (mFDXs) but lost one of the cysteines required for the coordination of the iron-sulfur (Fe-S) cluster, supposedly essential for the electron transfer function of FDXs. Accordingly, our biochemical study showed that AtmFDX-like does not bind an Fe-S cluster and is therefore unlikely to be involved in electron transfer reactions. To study the function of mFDX-like, we created deletion lines in Arabidopsis using a CRISPR/Cas9-based strategy. These lines did not show any abnormal phenotype under standard growth conditions. However, the characterization of the OXPHOS system demonstrated that mFDX-like is important for the assembly of complex I and essential for the formation of complex I-containing supercomplexes. We propose that mFDX-like and the bridge domain are required for the correct conformation of the membrane arm of complex I that is essential for the association of complex I with complex III2 to form supercomplexes.

摘要

在真核生物中,线粒体 ATP 主要由氧化磷酸化(OXPHOS)系统产生,该系统由 5 个多蛋白复合物(复合物 I-V)组成。通过天然凝胶电泳分析 OXPHOS 系统,揭示了 OXPHOS 复合物组织成超复合物,但它们的作用和组装途径仍不清楚。在本研究中,我们对一种非典型的线粒体铁氧还蛋白(线粒体铁氧还蛋白样,mFDX-like)进行了表征。该蛋白先前被发现是连接复合物 I 基质和膜臂的桥域的一部分。系统发育分析表明,拟南芥(Arabidopsis thaliana)mFDX-like 从经典的线粒体铁氧还蛋白(mFDXs)进化而来,但失去了协调铁硫(Fe-S)簇所必需的一个半胱氨酸,该半胱氨酸对 FDXs 的电子转移功能至关重要。因此,我们的生化研究表明,AtmFDX-like 不结合 Fe-S 簇,因此不太可能参与电子转移反应。为了研究 mFDX-like 的功能,我们使用基于 CRISPR/Cas9 的策略在拟南芥中创建了缺失系。这些系在标准生长条件下没有表现出任何异常表型。然而,对 OXPHOS 系统的表征表明,mFDX-like 对复合物 I 的组装很重要,并且对包含复合物 I 的超复合物的形成是必需的。我们提出,mFDX-like 和桥域对于复合物 I 的膜臂的正确构象是必需的,复合物 I 的膜臂的正确构象对于复合物 I 与复合物 III2 的结合形成超复合物是必需的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/1b7f856bb0d5/kiad040f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/2cd9f526df03/kiad040f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/3c3ea2372d77/kiad040f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/1ac41bb92ee2/kiad040f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/5b0c514ccae9/kiad040f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/b34a35305212/kiad040f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/e96a20e202d5/kiad040f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/1b7f856bb0d5/kiad040f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/2cd9f526df03/kiad040f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/3c3ea2372d77/kiad040f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/1ac41bb92ee2/kiad040f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/5b0c514ccae9/kiad040f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/b34a35305212/kiad040f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/e96a20e202d5/kiad040f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/10069907/1b7f856bb0d5/kiad040f7.jpg

相似文献

[1]
Mitochondrial ferredoxin-like is essential for forming complex I-containing supercomplexes in Arabidopsis.

Plant Physiol. 2023-4-3

[2]
C1-FDX is required for the assembly of mitochondrial complex I and subcomplexes of complex V in Arabidopsis.

PLoS Genet. 2024-10-2

[3]
Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I + III2 levels and alters mitochondrial physiology in Arabidopsis.

J Mol Biol. 2005-7-8

[4]
Human Mitochondrial Ferredoxin 1 (FDX1) and Ferredoxin 2 (FDX2) Both Bind Cysteine Desulfurase and Donate Electrons for Iron-Sulfur Cluster Biosynthesis.

Biochemistry. 2017-1-24

[5]
Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis.

Biochim Biophys Acta. 2012-2

[6]
A ferredoxin bridge connects the two arms of plant mitochondrial complex I.

Plant Cell. 2021-7-19

[7]
Identification and molecular characterization of mitochondrial ferredoxins and ferredoxin reductase from Arabidopsis.

Plant Mol Biol. 2003-7

[8]
Supercomplex supercomplexes: Raison d'etre and functional significance of supramolecular organization in oxidative phosphorylation.

Biomol Concepts. 2022-5-26

[9]
The Arabidopsis chloroplastic NifU-like protein CnfU, which can act as an iron-sulfur cluster scaffold protein, is required for biogenesis of ferredoxin and photosystem I.

Plant Cell. 2004-4

[10]
Plant supercomplex I + III2 structure and function: implications for the growing field.

Biochem Soc Trans. 2024-8-28

引用本文的文献

[1]
Structural and Functional Perspectives on Mitochondrial LYR-Domain Proteins in Plants.

Physiol Plant. 2025

[2]
C1-FDX is required for the assembly of mitochondrial complex I and subcomplexes of complex V in Arabidopsis.

PLoS Genet. 2024-10-2

[3]
Plant supercomplex I + III2 structure and function: implications for the growing field.

Biochem Soc Trans. 2024-8-28

[4]
Structural rather than catalytic role for mitochondrial respiratory chain supercomplexes.

Elife. 2023-10-12

[5]
The biogenesis and regulation of the plant oxidative phosphorylation system.

Plant Physiol. 2023-5-31

本文引用的文献

[1]
Cryo-EM structure of the respiratory I + III supercomplex from Arabidopsis thaliana at 2 Å resolution.

Nat Plants. 2023-1

[2]
Plant-specific features of respiratory supercomplex I + III from Vigna radiata.

Nat Plants. 2023-1

[3]
Maturation and Assembly of Iron-Sulfur Cluster-Containing Subunits in the Mitochondrial Complex I From Plants.

Front Plant Sci. 2022-5-23

[4]
Structural insights into the assembly and the function of the plant oxidative phosphorylation system.

New Phytol. 2022-8

[5]
Structures of 's respiratory chain reveal the diversity of eukaryotic core metabolism.

Science. 2022-5-20

[6]
A mitochondrial ADXR-ADX-P450 electron transport chain is essential for maternal gametophytic control of embryogenesis in .

Proc Natl Acad Sci U S A. 2022-1-25

[7]
High-resolution structure and dynamics of mitochondrial complex I-Insights into the proton pumping mechanism.

Sci Adv. 2021-11-12

[8]
Large scale genomic rearrangements in selected Arabidopsis thaliana T-DNA lines are caused by T-DNA insertion mutagenesis.

BMC Genomics. 2021-8-6

[9]
Structure of respiratory complex I reconstituted into lipid nanodiscs reveals an uncoupled conformation.

Elife. 2021-7-26

[10]
MEGA11: Molecular Evolutionary Genetics Analysis Version 11.

Mol Biol Evol. 2021-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索