Department of Plant Physiology, Institute of Biology, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany.
Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Interactions Arbres-Microorganismes (IAM), Université de Lorraine, F-54000 Nancy, France.
Plant Physiol. 2023 Apr 3;191(4):2170-2184. doi: 10.1093/plphys/kiad040.
In eukaryotes, mitochondrial ATP is mainly produced by the oxidative phosphorylation (OXPHOS) system, which is composed of 5 multiprotein complexes (complexes I-V). Analyses of the OXPHOS system by native gel electrophoresis have revealed an organization of OXPHOS complexes into supercomplexes, but their roles and assembly pathways remain unclear. In this study, we characterized an atypical mitochondrial ferredoxin (mitochondrial ferredoxin-like, mFDX-like). This protein was previously found to be part of the bridge domain linking the matrix and membrane arms of the complex I. Phylogenetic analysis suggested that the Arabidopsis (Arabidopsis thaliana) mFDX-like evolved from classical mitochondrial ferredoxins (mFDXs) but lost one of the cysteines required for the coordination of the iron-sulfur (Fe-S) cluster, supposedly essential for the electron transfer function of FDXs. Accordingly, our biochemical study showed that AtmFDX-like does not bind an Fe-S cluster and is therefore unlikely to be involved in electron transfer reactions. To study the function of mFDX-like, we created deletion lines in Arabidopsis using a CRISPR/Cas9-based strategy. These lines did not show any abnormal phenotype under standard growth conditions. However, the characterization of the OXPHOS system demonstrated that mFDX-like is important for the assembly of complex I and essential for the formation of complex I-containing supercomplexes. We propose that mFDX-like and the bridge domain are required for the correct conformation of the membrane arm of complex I that is essential for the association of complex I with complex III2 to form supercomplexes.
在真核生物中,线粒体 ATP 主要由氧化磷酸化(OXPHOS)系统产生,该系统由 5 个多蛋白复合物(复合物 I-V)组成。通过天然凝胶电泳分析 OXPHOS 系统,揭示了 OXPHOS 复合物组织成超复合物,但它们的作用和组装途径仍不清楚。在本研究中,我们对一种非典型的线粒体铁氧还蛋白(线粒体铁氧还蛋白样,mFDX-like)进行了表征。该蛋白先前被发现是连接复合物 I 基质和膜臂的桥域的一部分。系统发育分析表明,拟南芥(Arabidopsis thaliana)mFDX-like 从经典的线粒体铁氧还蛋白(mFDXs)进化而来,但失去了协调铁硫(Fe-S)簇所必需的一个半胱氨酸,该半胱氨酸对 FDXs 的电子转移功能至关重要。因此,我们的生化研究表明,AtmFDX-like 不结合 Fe-S 簇,因此不太可能参与电子转移反应。为了研究 mFDX-like 的功能,我们使用基于 CRISPR/Cas9 的策略在拟南芥中创建了缺失系。这些系在标准生长条件下没有表现出任何异常表型。然而,对 OXPHOS 系统的表征表明,mFDX-like 对复合物 I 的组装很重要,并且对包含复合物 I 的超复合物的形成是必需的。我们提出,mFDX-like 和桥域对于复合物 I 的膜臂的正确构象是必需的,复合物 I 的膜臂的正确构象对于复合物 I 与复合物 III2 的结合形成超复合物是必需的。
Biochim Biophys Acta. 2012-2
Plant Cell. 2021-7-19
Biochem Soc Trans. 2024-8-28
Biochem Soc Trans. 2024-8-28
Plant Physiol. 2023-5-31
Proc Natl Acad Sci U S A. 2022-1-25
Mol Biol Evol. 2021-6-25