文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Cryo-EM 结构解析拟南芥呼吸 I + III 超级复合物分辨率为 2 Å。

Cryo-EM structure of the respiratory I + III supercomplex from Arabidopsis thaliana at 2 Å resolution.

机构信息

Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt, Germany.

Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany.

出版信息

Nat Plants. 2023 Jan;9(1):142-156. doi: 10.1038/s41477-022-01308-6. Epub 2022 Dec 30.


DOI:10.1038/s41477-022-01308-6
PMID:36585502
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9873573/
Abstract

Protein complexes of the mitochondrial respiratory chain assemble into respiratory supercomplexes. Here we present the high-resolution electron cryo-microscopy structure of the Arabidopsis respiratory supercomplex consisting of complex I and a complex III dimer, with a total of 68 protein subunits and numerous bound cofactors. A complex I-ferredoxin, subunit B14.7 and P9, a newly defined subunit of plant complex I, mediate supercomplex formation. The component complexes stabilize one another, enabling new detailed insights into their structure. We describe (1) an interrupted aqueous passage for proton translocation in the membrane arm of complex I; (2) a new coenzyme A within the carbonic anhydrase module of plant complex I defining a second catalytic centre; and (3) the water structure at the proton exit pathway of complex III with a co-purified ubiquinone in the Q site. We propose that the main role of the plant supercomplex is to stabilize its components in the membrane.

摘要

线粒体呼吸链的蛋白质复合物组装成呼吸超复合物。在这里,我们呈现了由复合物 I 和一个复合物 III 二聚体组成的拟南芥呼吸超复合物的高分辨率电子 cryo-microscopy 结构,总共有 68 个蛋白质亚基和许多结合的辅助因子。复合物 I-铁氧还蛋白、亚基 B14.7 和 P9,一种新定义的植物复合物 I 的亚基,介导超复合物的形成。组成复合物相互稳定,使我们能够对它们的结构有新的详细了解。我们描述了(1)在复合物 I 的膜臂中质子转移的中断的含水通道;(2)在植物复合物 I 的碳酸酐酶模块中的新辅酶 A 定义了第二个催化中心;以及(3)在复合物 III 的质子出口途径中的水结构,其中在 Q 位点有一个共纯化的 ubiquinone。我们提出,植物超复合物的主要作用是稳定其在膜中的组件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/4a5faaa4276d/41477_2022_1308_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/28eff664e52b/41477_2022_1308_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/fd97547f021d/41477_2022_1308_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/0e521ab70202/41477_2022_1308_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/9c145e66bbe5/41477_2022_1308_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/202d73d67f89/41477_2022_1308_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/bc5d70085b4a/41477_2022_1308_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/574528cb47b8/41477_2022_1308_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/5bd1f2fed372/41477_2022_1308_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/acceb9bd19e3/41477_2022_1308_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/4877b7da72f6/41477_2022_1308_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/9ef6a9786f7b/41477_2022_1308_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/4536d25c0af3/41477_2022_1308_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/d45bd778892a/41477_2022_1308_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/fe5735a51c41/41477_2022_1308_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/6f8b091499a3/41477_2022_1308_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/4a5faaa4276d/41477_2022_1308_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/28eff664e52b/41477_2022_1308_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/fd97547f021d/41477_2022_1308_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/0e521ab70202/41477_2022_1308_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/9c145e66bbe5/41477_2022_1308_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/202d73d67f89/41477_2022_1308_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/bc5d70085b4a/41477_2022_1308_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/574528cb47b8/41477_2022_1308_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/5bd1f2fed372/41477_2022_1308_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/acceb9bd19e3/41477_2022_1308_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/4877b7da72f6/41477_2022_1308_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/9ef6a9786f7b/41477_2022_1308_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/4536d25c0af3/41477_2022_1308_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/d45bd778892a/41477_2022_1308_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/fe5735a51c41/41477_2022_1308_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/6f8b091499a3/41477_2022_1308_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9873573/4a5faaa4276d/41477_2022_1308_Fig16_ESM.jpg

相似文献

[1]
Cryo-EM structure of the respiratory I + III supercomplex from Arabidopsis thaliana at 2 Å resolution.

Nat Plants. 2023-1

[2]
Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III.

Proc Natl Acad Sci U S A. 2005-3-1

[3]
Plant supercomplex I + III2 structure and function: implications for the growing field.

Biochem Soc Trans. 2024-8-28

[4]
Structural basis of mitochondrial membrane bending by the I-II-III-IV supercomplex.

Nature. 2023-3

[5]
Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I + III2 levels and alters mitochondrial physiology in Arabidopsis.

J Mol Biol. 2005-7-8

[6]
Conserved in situ arrangement of complex I and III in mitochondrial respiratory chain supercomplexes of mammals, yeast, and plants.

Proc Natl Acad Sci U S A. 2018-3-8

[7]
A structural investigation of complex I and I+III2 supercomplex from Zea mays at 11-13 A resolution: assignment of the carbonic anhydrase domain and evidence for structural heterogeneity within complex I.

Biochim Biophys Acta. 2008-1

[8]
Atomic structures of respiratory complex III, complex IV, and supercomplex III-IV from vascular plants.

Elife. 2021-1-19

[9]
Plant-specific features of respiratory supercomplex I + III from Vigna radiata.

Nat Plants. 2023-1

[10]
A ferredoxin bridge connects the two arms of plant mitochondrial complex I.

Plant Cell. 2021-7-19

引用本文的文献

[1]
Structural and Functional Perspectives on Mitochondrial LYR-Domain Proteins in Plants.

Physiol Plant. 2025

[2]
Collisional Cross-Section Prediction for Multiconformational Peptide Ions with IM2Deep.

Anal Chem. 2025-7-22

[3]
Flexibility and Hydration of the Q Site Determine Multiple Pathways for Proton Transfer in Cytochrome .

J Chem Inf Model. 2025-6-23

[4]
X-Ray Crystal and Cryo-Electron Microscopy Structure Analysis Unravels How the Unique Thylakoid Lipid Composition Is Utilized by Cytochrome for Driving Reversible Proteins' Reorganization During State Transitions.

Membranes (Basel). 2025-5-8

[5]
Structure, assembly and inhibition of the Toxoplasma gondii respiratory chain supercomplex.

Nat Struct Mol Biol. 2025-5-19

[6]
Preparation of oxygen-sensitive proteins for high-resolution cryoEM structure determination using blot-free vitrification.

Nat Commun. 2025-4-14

[7]
Redox-Activated Proton Transfer through a Redundant Network in the Q Site of Cytochrome .

J Chem Inf Model. 2025-3-10

[8]
The complex I subunit B22 contains a LYR domain that is crucial for an interaction with the mitochondrial acyl carrier protein SDAP1.

Plant J. 2025-2

[9]
Cryo-EM structure of the NDH-PSI-LHCI supercomplex from Spinacia oleracea.

Nat Struct Mol Biol. 2025-1-24

[10]
C1-FDX is required for the assembly of mitochondrial complex I and subcomplexes of complex V in Arabidopsis.

PLoS Genet. 2024-10-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索