Department of Psychology, Shanghai Normal University, Shanghai 200234, China.
The Research Base of Online Education for Shanghai Middle and Primary Schools, Shanghai 200234, China.
Soc Cogn Affect Neurosci. 2023 Feb 28;18(1). doi: 10.1093/scan/nsad002.
Forgiveness is a positive, prosocial manner of reacting to transgressions and is strongly associated with mental health and well-being. Despite recent studies exploring the neural mechanisms underlying forgiveness, a model capable of predicting trait forgiveness at the individual level has not been developed. Herein, we applied a machine-learning approach, connectome-based predictive modeling (CPM), with whole-brain resting-state functional connectivity (rsFC) to predict individual differences in trait forgiveness in a training set (dataset 1, N = 100, 35 men, 17-24 years). As a result, CPM successfully predicted individual trait forgiveness based on whole-brain rsFC, especially via the functional connectivity of the limbic, prefrontal and temporal areas, which are key contributors to the prediction model comprising regions previously implicated in forgiveness. These regions include the retrosplenial cortex, temporal pole, dorsolateral prefrontal cortex (PFC), dorsal anterior cingulate cortex, precuneus and dorsal posterior cingulate cortex. Importantly, this predictive model could be successfully generalized to an independent sample (dataset 2, N = 71, 17 men, 16-25 years). These findings highlight the important roles of the limbic system, PFC and temporal region in trait forgiveness prediction and represent the initial steps toward establishing an individualized prediction model of forgiveness.
宽恕是一种积极的、亲社会的反应方式,可以与心理健康和幸福感密切相关。尽管最近有研究探索了宽恕的神经机制,但尚未开发出能够预测个体特质宽恕的模型。在此,我们应用了一种基于连接组的预测建模(CPM)方法,结合全脑静息态功能连接(rsFC),对训练集(数据集 1,N=100,35 名男性,17-24 岁)中的个体特质宽恕进行预测。结果表明,CPM 可以成功地基于全脑 rsFC 预测个体特质宽恕,特别是通过边缘系统、前额叶和颞叶区域的功能连接,这些区域是构成包含先前与宽恕相关的区域的预测模型的关键贡献者。这些区域包括后扣带回皮层、颞极、背外侧前额叶皮层(PFC)、背侧前扣带回皮层、楔前叶和背侧后扣带回皮层。重要的是,该预测模型可以成功地推广到独立的样本(数据集 2,N=71,17 名男性,16-25 岁)。这些发现强调了边缘系统、PFC 和颞区在预测特质宽恕中的重要作用,代表了建立个性化宽恕预测模型的初步步骤。