Suppr超能文献

个体特质预测的神经影像学研究报告细节:文献综述。

Reporting details of neuroimaging studies on individual traits prediction: A literature survey.

机构信息

Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.

Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

出版信息

Neuroimage. 2022 Aug 1;256:119275. doi: 10.1016/j.neuroimage.2022.119275. Epub 2022 May 2.

Abstract

Using machine-learning tools to predict individual phenotypes from neuroimaging data is one of the most promising and hence dynamic fields in systems neuroscience. Here, we perform a literature survey of the rapidly work on phenotype prediction in healthy subjects or general population to sketch out the current state and ongoing developments in terms of data, analysis methods and reporting. Excluding papers on age-prediction and clinical applications, which form a distinct literature, we identified a total 108 papers published since 2007. In these, memory, fluid intelligence and attention were most common phenotypes to be predicted, which resonates with the observation that roughly a quarter of the papers used data from the Human Connectome Project, even though another half recruited their own cohort. Sample size (in terms of training and external test sets) and prediction accuracy (from internal and external validation respectively) did not show significant temporal trends. Prediction accuracy was negatively correlated with sample size of the training set, but not the external test set. While known to be optimistic, leave-one-out cross-validation (LOO CV) was the prevalent strategy for model validation (n = 48). Meanwhile, 27 studies used external validation with external test set. Both numbers showed no significant temporal trends. The most popular learning algorithm was connectome-based predictive modeling introduced by the Yale team. Other common learning algorithms were linear regression, relevance vector regression (RVR), support vector regression (SVR), least absolute shrinkage and selection operator (LASSO), and elastic net. Meanwhile, the amount of data from self-recruiting studies (but not studies using open, shared dataset) was positively correlated with internal validation prediction accuracy. At the same time, self-recruiting studies also reported a significantly higher internal validation prediction accuracy than those using open, shared datasets. Data type and participant age did not significantly influence prediction accuracy. Confound control also did not influence prediction accuracy after adjusted for other factors. To conclude, most of the current literature is probably quite optimistic with internal validation using LOO CV. More efforts should be made to encourage the use of external validation with external test sets to further improve generalizability of the models.

摘要

利用机器学习工具从神经影像学数据中预测个体表型是系统神经科学中最有前途且活跃的领域之一。在这里,我们对健康受试者或一般人群中表型预测的快速研究进行文献综述,以概述当前数据、分析方法和报告的状态和进展。排除专门研究年龄预测和临床应用的文献(这些文献形成了一个独特的领域),我们共确定了自 2007 年以来发表的总计 108 篇论文。在这些论文中,记忆、流体智力和注意力是最常见的预测表型,这与大约四分之一的论文使用人类连接组计划数据的观察结果一致,尽管另外一半论文招募了自己的队列。样本量(以训练和外部测试集的形式)和预测准确性(分别来自内部和外部验证)没有表现出显著的时间趋势。预测准确性与训练集的样本量呈负相关,但与外部测试集无关。尽管众所周知,留一法交叉验证(LOO CV)是模型验证的流行策略(n=48)。与此同时,有 27 项研究使用外部验证和外部测试集。这两个数字都没有显示出显著的时间趋势。最流行的学习算法是耶鲁大学团队提出的基于连接组的预测建模。其他常见的学习算法是线性回归、相关性向量回归(RVR)、支持向量回归(SVR)、最小绝对收缩和选择算子(LASSO)和弹性网络。与此同时,来自自我招募研究的数据量(但不是使用开放、共享数据集的研究)与内部验证预测准确性呈正相关。与此同时,自我招募的研究也报告说,与使用开放、共享数据集的研究相比,内部验证的预测准确性要高得多。数据类型和参与者年龄对预测准确性没有显著影响。在调整其他因素后,混淆控制也不会影响预测准确性。总之,使用 LOO CV 进行内部验证的大多数当前文献可能相当乐观。应该做出更多努力,鼓励使用外部验证和外部测试集,以进一步提高模型的可推广性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验