Suppr超能文献

利用数据驱动的超分辨率提高体内人类大脑皮质表面重建。

Improving in vivo human cerebral cortical surface reconstruction using data-driven super-resolution.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States.

Harvard Medical School, Boston, MA, United States.

出版信息

Cereb Cortex. 2021 Jan 1;31(1):463-482. doi: 10.1093/cercor/bhaa237.

Abstract

Accurate and automated reconstruction of the in vivo human cerebral cortical surface from anatomical magnetic resonance (MR) images facilitates the quantitative analysis of cortical structure. Anatomical MR images with sub-millimeter isotropic spatial resolution improve the accuracy of cortical surface and thickness estimation compared to the standard 1-millimeter isotropic resolution. Nonetheless, sub-millimeter resolution acquisitions require averaging multiple repetitions to achieve sufficient signal-to-noise ratio and are therefore long and potentially vulnerable to subject motion. We address this challenge by synthesizing sub-millimeter resolution images from standard 1-millimeter isotropic resolution images using a data-driven supervised machine learning-based super-resolution approach achieved via a deep convolutional neural network. We systematically characterize our approach using a large-scale simulated dataset and demonstrate its efficacy in empirical data. The super-resolution data provide improved cortical surfaces similar to those obtained from native sub-millimeter resolution data. The whole-brain mean absolute discrepancy in cortical surface positioning and thickness estimation is below 100 μm at the single-subject level and below 50 μm at the group level for the simulated data, and below 200 μm at the single-subject level and below 100 μm at the group level for the empirical data, making the accuracy of cortical surfaces derived from super-resolution sufficient for most applications.

摘要

从解剖磁共振(MR)图像准确且自动重建活体人脑皮质表面,有助于皮质结构的定量分析。与标准的 1 毫米各向同性分辨率相比,具有亚毫米各向同性空间分辨率的解剖 MR 图像提高了皮质表面和厚度估计的准确性。尽管如此,亚毫米分辨率的采集需要平均多次重复以获得足够的信噪比,因此时间长且容易受到受试者运动的影响。我们通过使用基于数据驱动的监督机器学习的超分辨率方法从标准的 1 毫米各向同性分辨率图像中合成亚毫米分辨率图像来解决这个挑战,该方法通过深度卷积神经网络来实现。我们使用大规模模拟数据集系统地描述了我们的方法,并在经验数据中证明了其有效性。超分辨率数据提供了改进的皮质表面,与从原始亚毫米分辨率数据获得的皮质表面相似。对于模拟数据,在单个受试者水平上,皮质表面定位和厚度估计的全脑平均绝对差异低于 100μm,在组水平上低于 50μm,对于经验数据,在单个受试者水平上低于 200μm,在组水平上低于 100μm,使得超分辨率得出的皮质表面的准确性足以满足大多数应用。

相似文献

1
Improving in vivo human cerebral cortical surface reconstruction using data-driven super-resolution.
Cereb Cortex. 2021 Jan 1;31(1):463-482. doi: 10.1093/cercor/bhaa237.
2
Improved cortical surface reconstruction using sub-millimeter resolution MPRAGE by image denoising.
Neuroimage. 2021 Jun;233:117946. doi: 10.1016/j.neuroimage.2021.117946. Epub 2021 Mar 10.
3
An Arbitrary Scale Super-Resolution Approach for 3D MR Images via Implicit Neural Representation.
IEEE J Biomed Health Inform. 2023 Feb;27(2):1004-1015. doi: 10.1109/JBHI.2022.3223106.
5
Multiscale brain MRI super-resolution using deep 3D convolutional networks.
Comput Med Imaging Graph. 2019 Oct;77:101647. doi: 10.1016/j.compmedimag.2019.101647. Epub 2019 Aug 14.
6
Consistent reconstruction of cortical surfaces from longitudinal brain MR images.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):671-9. doi: 10.1007/978-3-642-23629-7_82.
7
Deep learning-based single image super-resolution for low-field MR brain images.
Sci Rep. 2022 Apr 16;12(1):6362. doi: 10.1038/s41598-022-10298-6.
8
Small training dataset convolutional neural networks for application-specific super-resolution microscopy.
J Biomed Opt. 2023 Mar;28(3):036501. doi: 10.1117/1.JBO.28.3.036501. Epub 2023 Mar 14.
10
A hybrid convolutional neural network for super-resolution reconstruction of MR images.
Med Phys. 2020 Jul;47(7):3013-3022. doi: 10.1002/mp.14152. Epub 2020 Apr 27.

引用本文的文献

1
Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2025 Jun;2025:10455-10465. doi: 10.1109/cvpr52734.2025.00978. Epub 2025 Aug 13.
2
High-resolution 7T fMRI reveals the visual zone of the human claustrum.
Imaging Neurosci (Camb). 2024 Oct 24;2. doi: 10.1162/imag_a_00327. eCollection 2024.
3
Deep-learning-accelerated T1-MPRAGE MRI for quantification and visual grading of cerebral volume in memory loss patients.
Radiol Adv. 2025 Jun 2;2(4):umaf022. doi: 10.1093/radadv/umaf022. eCollection 2025 Jul.
5
In vivo evidence for cell body loss in cortical lesions in people with multiple sclerosis.
Ann Clin Transl Neurol. 2025 Jan;12(1):4-16. doi: 10.1002/acn3.52237. Epub 2024 Dec 13.
6
Deep learning-based super-resolution of structural brain MRI at 1.5 T: application to quantitative volume measurement.
MAGMA. 2024 Jul;37(3):465-475. doi: 10.1007/s10334-024-01165-8. Epub 2024 May 17.
7
Diffusion MRI data analysis assisted by deep learning synthesized anatomical images (DeepAnat).
Med Image Anal. 2023 May;86:102744. doi: 10.1016/j.media.2023.102744. Epub 2023 Jan 19.
10
[Multimodality-based super-resolution reconstruction for routine brain magnetic resonance images].
Nan Fang Yi Ke Da Xue Xue Bao. 2022 Jul 20;42(7):1019-1025. doi: 10.12122/j.issn.1673-4254.2022.07.08.

本文引用的文献

1
Multiscale brain MRI super-resolution using deep 3D convolutional networks.
Comput Med Imaging Graph. 2019 Oct;77:101647. doi: 10.1016/j.compmedimag.2019.101647. Epub 2019 Aug 14.
2
Utility of deep learning super-resolution in the context of osteoarthritis MRI biomarkers.
J Magn Reson Imaging. 2020 Mar;51(3):768-779. doi: 10.1002/jmri.26872. Epub 2019 Jul 16.
3
Deep learning-based super-resolution in coherent imaging systems.
Sci Rep. 2019 Mar 8;9(1):3926. doi: 10.1038/s41598-019-40554-1.
4
Deep learning enables cross-modality super-resolution in fluorescence microscopy.
Nat Methods. 2019 Jan;16(1):103-110. doi: 10.1038/s41592-018-0239-0. Epub 2018 Dec 17.
6
The Lifespan Human Connectome Project in Aging: An overview.
Neuroimage. 2019 Jan 15;185:335-348. doi: 10.1016/j.neuroimage.2018.10.009. Epub 2018 Oct 15.
7
Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects.
Neuroimage. 2018 Dec;183:972-984. doi: 10.1016/j.neuroimage.2018.09.060. Epub 2018 Sep 24.
8
The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5-21 year olds.
Neuroimage. 2018 Dec;183:456-468. doi: 10.1016/j.neuroimage.2018.08.050. Epub 2018 Aug 22.
9
Nighres: processing tools for high-resolution neuroimaging.
Gigascience. 2018 Jul 1;7(7). doi: 10.1093/gigascience/giy082.
10
Assessment of the generalization of learned image reconstruction and the potential for transfer learning.
Magn Reson Med. 2019 Jan;81(1):116-128. doi: 10.1002/mrm.27355. Epub 2018 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验