文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 MRI 的Δ放射组学方法预测软组织肉瘤对新辅助化疗的反应。

Predicting Soft Tissue Sarcoma Response to Neoadjuvant Chemotherapy Using an MRI-Based Delta-Radiomics Approach.

机构信息

Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94143, USA.

College of Medicine - Tucson, University of Arizona, Tucson, AZ, 85724, USA.

出版信息

Mol Imaging Biol. 2023 Aug;25(4):776-787. doi: 10.1007/s11307-023-01803-y. Epub 2023 Jan 25.


DOI:10.1007/s11307-023-01803-y
PMID:36695966
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10333397/
Abstract

OBJECTIVES: To evaluate the performance of machine learning-augmented MRI-based radiomics models for predicting response to neoadjuvant chemotherapy (NAC) in soft tissue sarcomas. METHODS: Forty-four subjects were identified retrospectively from patients who received NAC at our institution for pathologically proven soft tissue sarcomas. Only subjects who had both a baseline MRI prior to initiating chemotherapy and a post-treatment scan at least 2 months after initiating chemotherapy and prior to surgical resection were included. 3D ROIs were used to delineate whole-tumor volumes on pre- and post-treatment scans, from which 1708 radiomics features were extracted. Delta-radiomics features were calculated by subtraction of baseline from post-treatment values and used to distinguish treatment response through univariate analyses as well as machine learning-augmented radiomics analyses. RESULTS: Though only 4.74% of variables overall reached significance at p ≤ 0.05 in univariate analyses, Laws Texture Energy (LTE)-derived metrics represented 46.04% of all such features reaching statistical significance. ROC analyses similarly failed to predict NAC response, with AUCs of 0.40 (95% CI 0.22-0.58) and 0.44 (95% CI 0.26-0.62) for RF and AdaBoost, respectively. CONCLUSION: Overall, while our result was not able to separate NAC responders from non-responders, our analyses did identify a subset of LTE-derived metrics that show promise for further investigations. Future studies will likely benefit from larger sample size constructions so as to avoid the need for data filtering and feature selection techniques, which have the potential to significantly bias the machine learning procedures.

摘要

目的:评估基于机器学习增强 MRI 的放射组学模型预测软组织肉瘤新辅助化疗(NAC)反应的性能。

方法:从在我院接受 NAC 治疗的病理证实的软组织肉瘤患者中回顾性确定了 44 名受试者。仅纳入在开始化疗前具有基线 MRI 且在开始化疗后至少 2 个月和手术切除前具有治疗后扫描的受试者。使用 3D ROI 在前治疗和后治疗扫描上描绘整个肿瘤体积,从中提取 1708 个放射组学特征。通过从治疗后值中减去基线值来计算 delta-radiomics 特征,并通过单变量分析以及机器学习增强放射组学分析来区分治疗反应。

结果:尽管单变量分析中整体只有 4.74%的变量达到 p≤0.05 的显著性水平,但 Laws 纹理能量(LTE)衍生指标代表了达到统计学显著性的所有此类特征的 46.04%。ROC 分析同样未能预测 NAC 反应,随机森林和 AdaBoost 的 AUC 分别为 0.40(95%CI 0.22-0.58)和 0.44(95%CI 0.26-0.62)。

结论:总体而言,尽管我们的结果未能将 NAC 应答者与非应答者分开,但我们的分析确实确定了一组 LTE 衍生指标,这些指标具有进一步研究的潜力。未来的研究可能会受益于更大的样本量构建,以避免数据过滤和特征选择技术的需要,这些技术有可能严重影响机器学习过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09b9/10333397/9cf1d5e4f540/11307_2023_1803_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09b9/10333397/ca83b913aaac/11307_2023_1803_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09b9/10333397/32f1c60d27fc/11307_2023_1803_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09b9/10333397/731fcd990514/11307_2023_1803_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09b9/10333397/9cf1d5e4f540/11307_2023_1803_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09b9/10333397/ca83b913aaac/11307_2023_1803_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09b9/10333397/32f1c60d27fc/11307_2023_1803_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09b9/10333397/731fcd990514/11307_2023_1803_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09b9/10333397/9cf1d5e4f540/11307_2023_1803_Fig4_HTML.jpg

相似文献

[1]
Predicting Soft Tissue Sarcoma Response to Neoadjuvant Chemotherapy Using an MRI-Based Delta-Radiomics Approach.

Mol Imaging Biol. 2023-8

[2]
Whole-tumor 3D volumetric MRI-based radiomics approach for distinguishing between benign and malignant soft tissue tumors.

Eur Radiol. 2021-11

[3]
T -based MRI Delta-radiomics improve response prediction in soft-tissue sarcomas treated by neoadjuvant chemotherapy.

J Magn Reson Imaging. 2018-12-19

[4]
MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy.

Radiother Oncol. 2021-11

[5]
Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy.

Eur J Radiol. 2022-1

[6]
A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy.

Breast Cancer Res. 2020-5-28

[7]
Automated prediction of the neoadjuvant chemotherapy response in osteosarcoma with deep learning and an MRI-based radiomics nomogram.

Eur Radiol. 2022-9

[8]
3D vs. 2D MRI radiomics in skeletal Ewing sarcoma: Feature reproducibility and preliminary machine learning analysis on neoadjuvant chemotherapy response prediction.

Front Oncol. 2022-12-2

[9]
Develop and validate a radiomics space-time model to predict the pathological complete response in patients undergoing neoadjuvant treatment of rectal cancer: an artificial intelligence model study based on machine learning.

BMC Cancer. 2023-4-21

[10]
Prediction of early clinical response to neoadjuvant chemotherapy in Triple-negative breast cancer: Incorporating Radiomics through breast MRI.

Sci Rep. 2024-9-17

引用本文的文献

[1]
MRI-Based Radiomics for Outcome Stratification in Pediatric Osteosarcoma.

Cancers (Basel). 2025-8-6

[2]
The Role of [F]FDG PET/CT Prior to and During Neoadjuvant Chemotherapy for Soft Tissue Sarcomas.

Curr Oncol. 2025-4-28

[3]
Editorial: Advances in artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors.

Front Radiol. 2024-12-17

[4]
Artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors.

Front Radiol. 2024-9-5

[5]
A multimodal neural network with gradient blending improves predictions of survival and metastasis in sarcoma.

NPJ Precis Oncol. 2024-9-5

[6]
The University of California San Francisco Adult Longitudinal Post-Treatment Diffuse Glioma MRI Dataset.

Radiol Artif Intell. 2024-7

[7]
The impact of radiomics in the management of soft tissue sarcoma.

Discov Oncol. 2024-3-5

[8]
CT and MRI radiomics of bone and soft-tissue sarcomas: an updated systematic review of reproducibility and validation strategies.

Insights Imaging. 2024-2-27

[9]
The role of imaging in extremity sarcoma surgery.

Skeletal Radiol. 2024-9

[10]
How AI May Transform Musculoskeletal Imaging.

Radiology. 2024-1

本文引用的文献

[1]
Predicting pathological complete response of neoadjuvant radiotherapy and targeted therapy for soft tissue sarcoma by whole-tumor texture analysis of multisequence MRI imaging.

Eur Radiol. 2023-6

[2]
Measuring the bias of incorrect application of feature selection when using cross-validation in radiomics.

Insights Imaging. 2021-11-24

[3]
CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma.

Eur Radiol. 2022-4

[4]
Single-center versus multi-center biparametric MRI radiomics approach for clinically significant peripheral zone prostate cancer.

Insights Imaging. 2021-10-21

[5]
Soft Tissue Sarcomas: The Role of Quantitative MRI in Treatment Response Evaluation.

Acad Radiol. 2022-7

[6]
Benchmarking Various Radiomic Toolkit Features While Applying the Image Biomarker Standardization Initiative toward Clinical Translation of Radiomic Analysis.

J Digit Imaging. 2021-10

[7]
MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy.

Radiother Oncol. 2021-11

[8]
Radiomics in the Setting of Neoadjuvant Radiotherapy: A New Approach for Tailored Treatment.

Cancers (Basel). 2021-7-17

[9]
The Challenge of Choosing the Best Classification Method in Radiomic Analyses: Recommendations and Applications to Lung Cancer CT Images.

Cancers (Basel). 2021-6-21

[10]
CT and MRI radiomics of bone and soft-tissue sarcomas: a systematic review of reproducibility and validation strategies.

Insights Imaging. 2021-6-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索