具有梯度融合的多模态神经网络可改善肉瘤生存和转移的预测。
A multimodal neural network with gradient blending improves predictions of survival and metastasis in sarcoma.
作者信息
Bozzo Anthony, Hollingsworth Alex, Chatterjee Subrata, Apte Aditya, Deng Jiawen, Sun Simon, Tap William, Aoude Ahmed, Bhatnagar Sahir, Healey John H
机构信息
Orthopaedic Service of the Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Division of Orthopaedic Surgery, McGill University, Montreal, QC, Canada.
出版信息
NPJ Precis Oncol. 2024 Sep 5;8(1):188. doi: 10.1038/s41698-024-00695-7.
The objective of this study is to develop a multimodal neural network (MMNN) model that analyzes clinical variables and MRI images of a soft tissue sarcoma (STS) patient, to predict overall survival and risk of distant metastases. We compare the performance of this MMNN to models based on clinical variables alone, radiomics models, and an unimodal neural network. We include patients aged 18 or older with biopsy-proven STS who underwent primary resection between January 1st, 2005, and December 31st, 2020 with complete outcome data and a pre-treatment MRI with both a T1 post-contrast sequence and a T2 fat-sat sequence available. A total of 9380 MRI slices containing sarcomas from 287 patients are available. Our MMNN accepts the entire 3D sarcoma volume from T1 and T2 MRIs and clinical variables. Gradient blending allows the clinical and image sub-networks to optimally converge without overfitting. Heat maps were generated to visualize the salient image features. Our MMNN outperformed all other models in predicting overall survival and the risk of distant metastases. The C-Index of our MMNN for overall survival is 0.77 and the C-Index for risk of distant metastases is 0.70. The provided heat maps demonstrate areas of sarcomas deemed most salient for predictions. Our multimodal neural network with gradient blending improves predictions of overall survival and risk of distant metastases in patients with soft tissue sarcoma. Future work enabling accurate subtype-specific predictions will likely utilize similar end-to-end multimodal neural network architecture and require prospective curation of high-quality data, the inclusion of genomic data, and the involvement of multiple centers through federated learning.
本研究的目的是开发一种多模态神经网络(MMNN)模型,该模型可分析软组织肉瘤(STS)患者的临床变量和MRI图像,以预测总生存期和远处转移风险。我们将这种MMNN的性能与仅基于临床变量的模型、放射组学模型和单模态神经网络进行比较。我们纳入了年龄在18岁及以上、经活检证实为STS且在2005年1月1日至2020年12月31日期间接受了初次切除且有完整结局数据以及同时具备T1增强序列和T2脂肪抑制序列的治疗前MRI的患者。共有来自287名患者的9380个包含肉瘤的MRI切片可用。我们的MMNN接受来自T1和T2 MRI的整个3D肉瘤体积以及临床变量。梯度融合允许临床和图像子网络在不过度拟合的情况下实现最佳收敛。生成热图以可视化突出的图像特征。我们的MMNN在预测总生存期和远处转移风险方面优于所有其他模型。我们的MMNN用于总生存期的C指数为0.77,用于远处转移风险的C指数为0.70。所提供的热图展示了被认为对预测最为突出的肉瘤区域。我们具有梯度融合的多模态神经网络改善了软组织肉瘤患者总生存期和远处转移风险的预测。未来能够进行准确的亚型特异性预测的工作可能会利用类似的端到端多模态神经网络架构,并且需要前瞻性地整理高质量数据、纳入基因组数据以及通过联邦学习让多个中心参与进来。