College of Information Science and Technology, Beijing University of Chemical Technology, Beijing100029, China.
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100094, China.
ACS Synth Biol. 2023 Feb 17;12(2):524-532. doi: 10.1021/acssynbio.2c00533. Epub 2023 Jan 25.
DNA origami is a milestone in DNA nanotechnology. It is robust and efficient in constructing arbitrary two- and three-dimensional nanostructures. The shape and size of origami structures vary. To characterize them, an atomic force microscope, a transmission electron microscope, and other microscopes are utilized. However, the identification of various origami nanostructures heavily depends on the experience of researchers. In this study, we used the deep learning method (improved Yolox) to detect multiple DNA origami structures and estimate their yield. We designed a feature enhancement fusion network with the attention mechanism, and related parameters were researched. Experiments conducted to verify the proposed method showed that the detection accuracy was higher than that of other methods. This method can detect and estimate the DNA origami yield in complex environments, and the detection speed is in the millisecond range.
DNA 折纸术是 DNA 纳米技术的一个里程碑。它在构建任意二维和三维纳米结构方面具有强大而高效的能力。折纸结构的形状和大小各异。为了对其进行表征,通常会使用原子力显微镜、透射电子显微镜和其他显微镜。然而,各种折纸纳米结构的识别在很大程度上依赖于研究人员的经验。在这项研究中,我们使用深度学习方法(改进后的 Yolox)来检测多种 DNA 折纸结构并估计它们的产量。我们设计了一个带有注意力机制的特征增强融合网络,并研究了相关参数。为了验证所提出的方法而进行的实验表明,该方法的检测精度高于其他方法。该方法可以在复杂环境中检测和估计 DNA 折纸产量,并且检测速度在毫秒范围内。