Suppr超能文献

原位质谱和机器学习快速评估人肾组织切片,以分类肾病综合征。

Rapid Molecular Evaluation of Human Kidney Tissue Sections by In Situ Mass Spectrometry and Machine Learning to Classify the Nephrotic Syndrome.

机构信息

Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India.

Department of Nephrology, St. John's Medical College Hospital, Bangalore 560034, India.

出版信息

J Proteome Res. 2023 Mar 3;22(3):967-976. doi: 10.1021/acs.jproteome.2c00768. Epub 2023 Jan 25.

Abstract

Nephrotic syndrome (NS) is classified based on morphological changes of glomeruli in biopsied kidney tissues evaluated by time-consuming microscopy methods. In contrast, we employed desorption electrospray ionization mass spectrometry (DESI-MS) directly on renal biopsy specimens obtained from 37 NS patients to rapidly differentiate lipid profiles of three prevalent forms of NS: IgA nephropathy ( = 9), membranous glomerulonephritis ( = 7), and lupus nephritis ( = 8), along with other types of glomerular diseases ( = 13). As we noted molecular heterogeneity in regularly spaced renal tissue regions, multiple sections from each biopsy specimen were collected, providing a total of 973 samples for investigation. Using multivariate analysis, we report differential expressions of glycerophospholipids, sphingolipids, and glycerolipids among the above four classes of NS kidneys, which were otherwise overlooked in several past studies correlating lipid abnormalities with glomerular diseases. We developed machine learning (ML) models with the top 100 features using the support vector machine, which enabled us to discriminate the concerned glomerular diseases with 100% overall accuracy in the training, validation, and holdout test set. This DESI-MS/ML-based tissue analysis can be completed in a few minutes, in sharp contrast to a daylong procedure followed in the conventional histopathology of NS.

摘要

肾病综合征 (NS) 根据肾活检组织中肾小球的形态学变化进行分类,这些变化需要通过耗时的显微镜方法进行评估。相比之下,我们采用解吸电喷雾电离质谱 (DESI-MS) 直接分析 37 名 NS 患者的肾活检标本,快速区分三种常见 NS 形式的脂质谱:IgA 肾病 (=9)、膜性肾小球肾炎 (=7) 和狼疮性肾炎 (=8),以及其他类型的肾小球疾病 (=13)。由于我们注意到在定期间隔的肾组织区域存在分子异质性,因此从每个活检标本中收集多个切片,总共对 973 个样本进行了研究。通过多变量分析,我们报告了上述四种 NS 肾脏中甘油磷脂、鞘脂和甘油酯的差异表达,这些脂质异常与肾小球疾病相关的过去几项研究中都被忽略了。我们使用支持向量机开发了具有前 100 个特征的机器学习 (ML) 模型,使我们能够在训练、验证和保留测试集中以 100%的总准确率区分相关的肾小球疾病。这种基于 DESI-MS/ML 的组织分析可以在几分钟内完成,与传统 NS 组织病理学中需要一整天的时间相比,速度非常快。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验