Department of Emergency Medicine, College of Medicine, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
Machine Learning Research Center for Medical Data, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
J Digit Imaging. 2023 Jun;36(3):1237-1247. doi: 10.1007/s10278-022-00772-y. Epub 2023 Jan 25.
Under the black-box nature in the deep learning model, it is uncertain how the change in contrast level and format affects the performance. We aimed to investigate the effect of contrast level and image format on the effectiveness of deep learning for diagnosing pneumothorax on chest radiographs. We collected 3316 images (1016 pneumothorax and 2300 normal images), and all images were set to the standard contrast level (100%) and stored in the Digital Imaging and Communication in Medicine and Joint Photographic Experts Group (JPEG) formats. Data were randomly separated into 80% of training and 20% of test sets, and the contrast of images in the test set was changed to 5 levels (50%, 75%, 100%, 125%, and 150%). We trained the model to detect pneumothorax using ResNet-50 with 100% level images and tested with 5-level images in the two formats. While comparing the overall performance between each contrast level in the two formats, the area under the receiver-operating characteristic curve (AUC) was significantly different (all p < 0.001) except between 125 and 150% in JPEG format (p = 0.382). When comparing the two formats at same contrast levels, AUC was significantly different (all p < 0.001) except 50% and 100% (p = 0.079 and p = 0.082, respectively). The contrast level and format of medical images could influence the performance of the deep learning model. It is required to train with various contrast levels and formats of image, and further image processing for improvement and maintenance of the performance.
在深度学习模型的黑箱性质下,尚不确定对比度水平和格式的变化如何影响性能。我们旨在研究对比度水平和图像格式对深度学习诊断胸片气胸效果的影响。我们收集了 3316 张图像(1016 张气胸和 2300 张正常图像),所有图像的对比度水平均设置为标准(100%),并以数字成像和通信在医学中的格式和联合图像专家组(JPEG)格式存储。数据随机分为 80%的训练集和 20%的测试集,测试集中的图像对比度水平改变为 5 个级别(50%、75%、100%、125%和 150%)。我们使用 ResNet-50 训练模型以 100%水平的图像检测气胸,并使用两种格式的 5 级图像进行测试。在比较两种格式中每个对比度级别的整体性能时,除 JPEG 格式的 125%和 150%之间(p=0.382)外,受试者工作特征曲线下的面积(AUC)均有显著差异(均 p<0.001)。在比较相同对比度级别的两种格式时,除 50%和 100%(p=0.079 和 p=0.082)外,AUC 均有显著差异(均 p<0.001)。医学图像的对比度水平和格式可能会影响深度学习模型的性能。需要使用各种对比度水平和格式的图像进行训练,并进一步进行图像处理以提高和维持性能。