Suppr超能文献

微小 RNA 对蛋白质变异性和基因表达保真度的影响。

The effect of microRNA on protein variability and gene expression fidelity.

机构信息

Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto, Mississauga, Ontario, Canada.

Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto, Mississauga, Ontario, Canada; Department of Cell & Systems Biology, University of Toronto, , Toronto, Ontario, Canada; Department of Mathematics, University of Toronto, Toronto, Ontario, Canada.

出版信息

Biophys J. 2023 Mar 7;122(5):905-923. doi: 10.1016/j.bpj.2023.01.027. Epub 2023 Jan 25.

Abstract

Small regulatory RNA molecules such as microRNA modulate gene expression through inhibiting the translation of messenger RNA (mRNA). Such posttranscriptional regulation has been recently hypothesized to reduce the stochastic variability of gene expression around average levels. Here, we quantify noise in stochastic gene expression models with and without such regulation. Our results suggest that silencing mRNA posttranscriptionally will always increase, rather than decrease, gene expression noise when the silencing of mRNA also increases its degradation, as is expected for microRNA interactions with mRNA. In that regime, we also find that silencing mRNA generally reduces the fidelity of signal transmission from deterministically varying upstream factors to protein levels. These findings suggest that microRNA binding to mRNA does not generically confer precision to protein expression.

摘要

小分子 RNA 类如 microRNA 通过抑制信使 RNA (mRNA) 的翻译来调节基因表达。这种转录后调控最近被假设可以降低基因表达在平均水平周围的随机可变性。在这里,我们在有和没有这种调控的随机基因表达模型中定量了噪声。我们的结果表明,当 mRNA 的沉默同时增加其降解时,mRNA 的转录后沉默总是会增加而不是减少基因表达噪声,这是与 mRNA 的 microRNA 相互作用所预期的。在这种情况下,我们还发现,mRNA 的沉默通常会降低从确定性变化的上游因素到蛋白质水平的信号传递的保真度。这些发现表明,microRNA 与 mRNA 的结合并不能普遍赋予蛋白质表达的精度。

相似文献

1
The effect of microRNA on protein variability and gene expression fidelity.
Biophys J. 2023 Mar 7;122(5):905-923. doi: 10.1016/j.bpj.2023.01.027. Epub 2023 Jan 25.
3
MicroRNA Based Feedforward Control of Intrinsic Gene Expression Noise.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Jan-Feb;18(1):272-282. doi: 10.1109/TCBB.2019.2938502. Epub 2021 Feb 3.
4
Nucleolin mediates microRNA-directed CSF-1 mRNA deadenylation but increases translation of CSF-1 mRNA.
Mol Cell Proteomics. 2013 Jun;12(6):1661-77. doi: 10.1074/mcp.M112.025288. Epub 2013 Mar 7.
5
Experimental Validation of MicroRNA Targets: Analysis of MicroRNA Targets Through Western Blotting.
Methods Mol Biol. 2019;1970:341-353. doi: 10.1007/978-1-4939-9207-2_19.
7
Analysis of microRNA Regulation in Single Cells.
Methods Mol Biol. 2021;2243:339-354. doi: 10.1007/978-1-0716-1103-6_18.
8
Biogenesis and mechanisms of microRNA-mediated gene regulation.
Biotechnol Bioeng. 2022 Mar;119(3):685-692. doi: 10.1002/bit.28029. Epub 2022 Jan 15.
9
10
Posttranscriptional upregulation by microRNAs.
Wiley Interdiscip Rev RNA. 2012 May-Jun;3(3):311-30. doi: 10.1002/wrna.121. Epub 2011 Nov 9.

引用本文的文献

3
Translation regulation by RNA stem-loops can reduce gene expression noise.
BMC Bioinformatics. 2024 Oct 22;24(Suppl 1):493. doi: 10.1186/s12859-024-05939-8.
4
Bioenergetic costs and the evolution of noise regulation by microRNAs.
Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2308796121. doi: 10.1073/pnas.2308796121. Epub 2024 Feb 22.

本文引用的文献

1
Coordination of gene expression noise with cell size: analytical results for agent-based models of growing cell populations.
J R Soc Interface. 2021 May;18(178):20210274. doi: 10.1098/rsif.2021.0274. Epub 2021 May 26.
2
Exact solution of stochastic gene expression models with bursting, cell cycle and replication dynamics.
Phys Rev E. 2020 Mar;101(3-1):032403. doi: 10.1103/PhysRevE.101.032403.
3
Analytical distributions for detailed models of stochastic gene expression in eukaryotic cells.
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4682-4692. doi: 10.1073/pnas.1910888117. Epub 2020 Feb 18.
4
MicroRNA Based Feedforward Control of Intrinsic Gene Expression Noise.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Jan-Feb;18(1):272-282. doi: 10.1109/TCBB.2019.2938502. Epub 2021 Feb 3.
5
Quasi-Steady-State Approximations Derived from the Stochastic Model of Enzyme Kinetics.
Bull Math Biol. 2019 May;81(5):1303-1336. doi: 10.1007/s11538-019-00574-4. Epub 2019 Feb 12.
6
Central dogma rates and the trade-off between precision and economy in gene expression.
Nat Commun. 2019 Jan 8;10(1):68. doi: 10.1038/s41467-018-07391-8.
7
Double Hybridization for MicroRNAs and mRNAs in Brain Tissues.
Front Mol Neurosci. 2016 Nov 22;9:126. doi: 10.3389/fnmol.2016.00126. eCollection 2016.
8
Exploiting Natural Fluctuations to Identify Kinetic Mechanisms in Sparsely Characterized Systems.
Cell Syst. 2016 Apr 27;2(4):251-9. doi: 10.1016/j.cels.2016.04.002.
9
Constraints on Fluctuations in Sparsely Characterized Biological Systems.
Phys Rev Lett. 2016 Feb 5;116(5):058101. doi: 10.1103/PhysRevLett.116.058101. Epub 2016 Feb 1.
10
Towards a molecular understanding of microRNA-mediated gene silencing.
Nat Rev Genet. 2015 Jul;16(7):421-33. doi: 10.1038/nrg3965. Epub 2015 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验