Suppr超能文献

通过未经训练的神经网络超越结构照明显微镜的分辨率限制。

Surpassing the resolution limitation of structured illumination microscopy by an untrained neural network.

作者信息

He Yu, Yao Yunhua, He Yilin, Huang Zhengqi, Luo Fan, Zhang Chonglei, Qi Dalong, Jia Tianqing, Wang Zhiyong, Sun Zhenrong, Yuan Xiaocong, Zhang Shian

机构信息

State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.

Contributed equally.

出版信息

Biomed Opt Express. 2022 Dec 12;14(1):106-117. doi: 10.1364/BOE.479621. eCollection 2023 Jan 1.

Abstract

Structured illumination microscopy (SIM), as a flexible tool, has been widely applied to observing subcellular dynamics in live cells. It is noted, however, that SIM still encounters a problem with theoretical resolution limitation being only twice over wide-field microscopy, where imaging of finer biological structures and dynamics are significantly constrained. To surpass the resolution limitation of SIM, we developed an image postprocessing method to further improve the lateral resolution of SIM by an untrained neural network, i.e., deep resolution-enhanced SIM (DRE-SIM). DRE-SIM can further extend the spatial frequency components of SIM by employing the implicit priors based on the neural network without training datasets. The further super-resolution capability of DRE-SIM is verified by theoretical simulations as well as experimental measurements. Our experimental results show that DRE-SIM can achieve the resolution enhancement by a factor of about 1.4 compared with conventional SIM. Given the advantages of improving the lateral resolution while keeping the imaging speed, DRE-SIM will have a wide range of applications in biomedical imaging, especially when high-speed imaging mechanisms are integrated into the conventional SIM system.

摘要

结构照明显微镜(SIM)作为一种灵活的工具,已被广泛应用于观察活细胞中的亚细胞动态。然而,需要注意的是,SIM仍然面临理论分辨率限制的问题,其分辨率仅比宽场显微镜高两倍,在宽场显微镜中,更精细的生物结构和动态成像受到显著限制。为了超越SIM的分辨率限制,我们开发了一种图像后处理方法,通过一个未经训练的神经网络,即深度分辨率增强SIM(DRE-SIM),进一步提高SIM的横向分辨率。DRE-SIM可以通过基于神经网络的隐式先验,在没有训练数据集的情况下进一步扩展SIM的空间频率分量。DRE-SIM的进一步超分辨率能力通过理论模拟和实验测量得到了验证。我们的实验结果表明,与传统SIM相比,DRE-SIM可以实现约1.4倍的分辨率增强。鉴于DRE-SIM在保持成像速度的同时提高横向分辨率的优势,它将在生物医学成像中具有广泛的应用,特别是当高速成像机制集成到传统SIM系统中时。

相似文献

6
Answering some questions about structured illumination microscopy.回答一些关于结构光照明显微镜的问题。
Philos Trans A Math Phys Eng Sci. 2022 Apr 4;380(2220):20210109. doi: 10.1098/rsta.2021.0109. Epub 2022 Feb 14.

本文引用的文献

5
Click-ExM enables expansion microscopy for all biomolecules.Click-ExM 使所有生物分子的扩展显微镜成为可能。
Nat Methods. 2021 Jan;18(1):107-113. doi: 10.1038/s41592-020-01005-2. Epub 2020 Dec 7.
6
Phase imaging with an untrained neural network.使用未经训练的神经网络进行相位成像。
Light Sci Appl. 2020 May 6;9:77. doi: 10.1038/s41377-020-0302-3. eCollection 2020.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验