Suppr超能文献

通过未经训练的神经网络超越结构照明显微镜的分辨率限制。

Surpassing the resolution limitation of structured illumination microscopy by an untrained neural network.

作者信息

He Yu, Yao Yunhua, He Yilin, Huang Zhengqi, Luo Fan, Zhang Chonglei, Qi Dalong, Jia Tianqing, Wang Zhiyong, Sun Zhenrong, Yuan Xiaocong, Zhang Shian

机构信息

State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.

Contributed equally.

出版信息

Biomed Opt Express. 2022 Dec 12;14(1):106-117. doi: 10.1364/BOE.479621. eCollection 2023 Jan 1.

Abstract

Structured illumination microscopy (SIM), as a flexible tool, has been widely applied to observing subcellular dynamics in live cells. It is noted, however, that SIM still encounters a problem with theoretical resolution limitation being only twice over wide-field microscopy, where imaging of finer biological structures and dynamics are significantly constrained. To surpass the resolution limitation of SIM, we developed an image postprocessing method to further improve the lateral resolution of SIM by an untrained neural network, i.e., deep resolution-enhanced SIM (DRE-SIM). DRE-SIM can further extend the spatial frequency components of SIM by employing the implicit priors based on the neural network without training datasets. The further super-resolution capability of DRE-SIM is verified by theoretical simulations as well as experimental measurements. Our experimental results show that DRE-SIM can achieve the resolution enhancement by a factor of about 1.4 compared with conventional SIM. Given the advantages of improving the lateral resolution while keeping the imaging speed, DRE-SIM will have a wide range of applications in biomedical imaging, especially when high-speed imaging mechanisms are integrated into the conventional SIM system.

摘要

结构照明显微镜(SIM)作为一种灵活的工具,已被广泛应用于观察活细胞中的亚细胞动态。然而,需要注意的是,SIM仍然面临理论分辨率限制的问题,其分辨率仅比宽场显微镜高两倍,在宽场显微镜中,更精细的生物结构和动态成像受到显著限制。为了超越SIM的分辨率限制,我们开发了一种图像后处理方法,通过一个未经训练的神经网络,即深度分辨率增强SIM(DRE-SIM),进一步提高SIM的横向分辨率。DRE-SIM可以通过基于神经网络的隐式先验,在没有训练数据集的情况下进一步扩展SIM的空间频率分量。DRE-SIM的进一步超分辨率能力通过理论模拟和实验测量得到了验证。我们的实验结果表明,与传统SIM相比,DRE-SIM可以实现约1.4倍的分辨率增强。鉴于DRE-SIM在保持成像速度的同时提高横向分辨率的优势,它将在生物医学成像中具有广泛的应用,特别是当高速成像机制集成到传统SIM系统中时。

相似文献

1
Surpassing the resolution limitation of structured illumination microscopy by an untrained neural network.
Biomed Opt Express. 2022 Dec 12;14(1):106-117. doi: 10.1364/BOE.479621. eCollection 2023 Jan 1.
2
3
Untrained neural network enabling fast and universal structured-illumination microscopy.
Opt Lett. 2024 May 1;49(9):2205-2208. doi: 10.1364/OL.511983.
4
Untrained, physics-informed neural networks for structured illumination microscopy.
Opt Express. 2023 Feb 27;31(5):8714-8724. doi: 10.1364/OE.476781.
5
Rapid Image Reconstruction of Structured Illumination Microscopy Directly in the Spatial Domain.
IEEE Photonics J. 2021 Feb;13(1). doi: 10.1109/JPHOT.2021.3053110. Epub 2021 Jan 20.
6
Answering some questions about structured illumination microscopy.
Philos Trans A Math Phys Eng Sci. 2022 Apr 4;380(2220):20210109. doi: 10.1098/rsta.2021.0109. Epub 2022 Feb 14.
7
Simultaneous multicolour imaging using quantum dot structured illumination microscopy.
J Microsc. 2020 Jan;277(1):32-41. doi: 10.1111/jmi.12862. Epub 2020 Jan 23.
8
Compact structured illumination microscopy with high spatial frequency diffractive lattice patterns.
Biomed Opt Express. 2022 Oct 31;13(11):6113-6123. doi: 10.1364/BOE.473899. eCollection 2022 Nov 1.
9
Enhancing the isotropy of lateral resolution in coherent structured illumination microscopy.
Biomed Opt Express. 2014 May 21;5(6):1895-912. doi: 10.1364/BOE.5.001895. eCollection 2014 Jun 1.
10
Adaptive optics for structured illumination microscopy based on deep learning.
Cytometry A. 2021 Jun;99(6):622-631. doi: 10.1002/cyto.a.24319. Epub 2021 Feb 17.

引用本文的文献

1
Development of AI-assisted microscopy frameworks through realistic simulation with pySTED.
Nat Mach Intell. 2024;6(10):1197-1215. doi: 10.1038/s42256-024-00903-w. Epub 2024 Sep 26.

本文引用的文献

1
Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy.
Nat Biotechnol. 2022 Apr;40(4):606-617. doi: 10.1038/s41587-021-01092-2. Epub 2021 Nov 15.
2
ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER.
Cell. 2021 Apr 29;184(9):2412-2429.e16. doi: 10.1016/j.cell.2021.03.035. Epub 2021 Apr 13.
3
High-fidelity structured illumination microscopy by point-spread-function engineering.
Light Sci Appl. 2021 Apr 1;10(1):70. doi: 10.1038/s41377-021-00513-w.
4
Evaluation and development of deep neural networks for image super-resolution in optical microscopy.
Nat Methods. 2021 Feb;18(2):194-202. doi: 10.1038/s41592-020-01048-5. Epub 2021 Jan 21.
5
Click-ExM enables expansion microscopy for all biomolecules.
Nat Methods. 2021 Jan;18(1):107-113. doi: 10.1038/s41592-020-01005-2. Epub 2020 Dec 7.
6
Phase imaging with an untrained neural network.
Light Sci Appl. 2020 May 6;9:77. doi: 10.1038/s41377-020-0302-3. eCollection 2020.
7
Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy.
Biomaterials. 2020 Aug;250:120059. doi: 10.1016/j.biomaterials.2020.120059. Epub 2020 Apr 19.
8
Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction.
Nat Commun. 2019 Sep 20;10(1):4315. doi: 10.1038/s41467-019-12165-x.
9
Fourier ring correlation simplifies image restoration in fluorescence microscopy.
Nat Commun. 2019 Jul 15;10(1):3103. doi: 10.1038/s41467-019-11024-z.
10
U-Net: deep learning for cell counting, detection, and morphometry.
Nat Methods. 2019 Jan;16(1):67-70. doi: 10.1038/s41592-018-0261-2. Epub 2018 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验