Ye Zitong, Li Xiaoyan, Sun Yile, Huang Yuran, Liu Xu, Han Yubing, Kuang Cuifang
Opt Lett. 2024 May 1;49(9):2205-2208. doi: 10.1364/OL.511983.
Structured-illumination microscopy (SIM) offers a twofold resolution enhancement beyond the optical diffraction limit. At present, SIM requires several raw structured-illumination (SI) frames to reconstruct a super-resolution (SR) image, especially the time-consuming reconstruction of speckle SIM, which requires hundreds of SI frames. Considering this, we herein propose an untrained structured-illumination reconstruction neural network (USRNN) with known illumination patterns to reduce the amount of raw data that is required for speckle SIM reconstruction by 20 times and thus improve its temporal resolution. Benefiting from the unsupervised optimizing strategy and CNNs' structure priors, the high-frequency information is obtained from the network without the requirement of datasets; as a result, a high-fidelity SR image with approximately twofold resolution enhancement can be reconstructed using five frames or less. Experiments on reconstructing non-biological and biological samples demonstrate the high-speed and high-universality capabilities of our method.
结构照明显微镜(SIM)可将分辨率提高两倍,超越光学衍射极限。目前,SIM需要多个原始结构照明(SI)帧来重建超分辨率(SR)图像,尤其是散斑SIM的耗时重建,这需要数百个SI帧。考虑到这一点,我们在此提出一种具有已知照明模式的无训练结构照明重建神经网络(USRNN),以将散斑SIM重建所需的原始数据量减少20倍,从而提高其时间分辨率。受益于无监督优化策略和卷积神经网络(CNNs)的结构先验,无需数据集即可从网络中获取高频信息;因此,可以使用五帧或更少的帧数重建具有约两倍分辨率增强的高保真SR图像。对非生物和生物样本进行重建的实验证明了我们方法的高速性和高通用性。