Opt Express. 2023 Feb 27;31(5):8714-8724. doi: 10.1364/OE.476781.
Structured illumination microscopy (SIM) is a popular super-resolution imaging technique that can achieve resolution improvements of 2× and greater depending on the illumination patterns used. Traditionally, images are reconstructed using the linear SIM reconstruction algorithm. However, this algorithm has hand-tuned parameters which can often lead to artifacts, and it cannot be used with more complex illumination patterns. Recently, deep neural networks have been used for SIM reconstruction, yet they require training sets that are difficult to capture experimentally. We demonstrate that we can combine a deep neural network with the forward model of the structured illumination process to reconstruct sub-diffraction images without training data. The resulting physics-informed neural network (PINN) can be optimized on a single set of diffraction-limited sub-images and thus does not require any training set. We show, with simulated and experimental data, that this PINN can be applied to a wide variety of SIM illumination methods by simply changing the known illumination patterns used in the loss function and can achieve resolution improvements that match theoretical expectations.
结构光照明显微镜(SIM)是一种流行的超分辨率成像技术,可根据使用的照明模式将分辨率提高 2 倍甚至更高。传统上,图像使用线性 SIM 重建算法进行重建。然而,该算法具有需要手动调整的参数,这往往会导致伪影,并且不能与更复杂的照明模式一起使用。最近,深度神经网络已被用于 SIM 重建,但它们需要难以通过实验捕获的训练集。我们证明,我们可以将深度神经网络与结构照明过程的正向模型相结合,在没有训练数据的情况下重建亚衍射图像。由此产生的物理信息神经网络(PINN)可以在单个衍射受限子图像集上进行优化,因此不需要任何训练集。我们通过模拟和实验数据表明,通过在损失函数中简单地改变已知的照明模式,该 PINN 可以应用于各种 SIM 照明方法,并实现与理论预期相匹配的分辨率提高。