Suppr超能文献

利用腺瘤和锯齿状肿瘤形成途径对结直肠癌的自然史和筛查效果进行建模:一个离散事件模拟模型的开发、校准与验证

Modeling the Natural History and Screening Effects of Colorectal Cancer Using Both Adenoma and Serrated Neoplasia Pathways: The Development, Calibration, and Validation of a Discrete Event Simulation Model.

作者信息

Cheng Chih-Yuan, Calderazzo Silvia, Schramm Christoph, Schlander Michael

机构信息

Division of Health Economics, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany.

出版信息

MDM Policy Pract. 2023 Jan 19;8(1):23814683221145701. doi: 10.1177/23814683221145701. eCollection 2023 Jan-Jun.

Abstract

UNLABELLED

Existing colorectal cancer (CRC) screening models mostly focus on the adenoma pathway of CRC development, overlooking the serrated neoplasia pathway, which might result in overly optimistic screening predictions. In addition, Bayesian inference methods have not been widely used for model calibration. We aimed to develop a CRC screening model accounting for both pathways, calibrate it with approximate Bayesian computation (ABC) methods, and validate it with large CRC screening trials. A discrete event simulation (DES) of the CRC natural history (DECAS) was constructed using the adenoma and serrated pathways in R software. The model simulates CRC-related events in a specific birth cohort through various natural history states. Calibration took advantage of 74 prevalence data points from the German screening colonoscopy program of 5.2 million average-risk participants using an ABC method. CRC incidence outputs from DECAS were validated with the German national cancer registry data; screening effects were validated using 17-y data from the UK Flexible Sigmoidoscopy Screening sigmoidoscopy trial and a German screening colonoscopy cohort study. The Bayesian calibration rendered 1,000 sets of posterior parameter samples. With the calibrated parameters, the observed age- and sex-specific CRC prevalences from the German registries were within the 95% DECAS-predicted intervals. Regarding screening effects, DECAS predicted a 41% (95% intervals 30%-51%) and 62% (95% intervals 55%-68%) reduction in 17-y cumulative CRC mortality for a single screening sigmoidoscopy and colonoscopy, respectively, falling within 95% confidence intervals reported in the 2 clinical studies used for validation. We presented DECAS, the first Bayesian-calibrated DES model for CRC natural history and screening, accounting for 2 CRC tumorigenesis pathways. The validated model can serve as a valid tool to evaluate the (cost-)effectiveness of CRC screening strategies.

HIGHLIGHTS

This article presents a new discrete event simulation model, DECAS, which models both adenoma-carcinoma and serrated neoplasia pathways for colorectal cancer (CRC) development and CRC screening effects.DECAS is calibrated based on a Bayesian inference method using the data from German screening colonoscopy program, which consists of more than 5 million first-time average-risk participants aged 55 years and older in 2003 to 2014.DECAS is flexible for evaluating various CRC screening strategies and can differentiate screening effects in different parts of the colon.DECAS is validated with large screening sigmoidoscopy and colonoscopy clinical study data and can be further used to evaluate the (cost-)effectiveness of German colorectal cancer screening strategies.

摘要

未标注

现有的结直肠癌(CRC)筛查模型大多聚焦于CRC发生的腺瘤途径,而忽略了锯齿状肿瘤形成途径,这可能导致筛查预测过于乐观。此外,贝叶斯推理方法尚未广泛用于模型校准。我们旨在开发一个兼顾两种途径的CRC筛查模型,用近似贝叶斯计算(ABC)方法对其进行校准,并用大型CRC筛查试验对其进行验证。在R软件中利用腺瘤和锯齿状途径构建了CRC自然史的离散事件模拟(DES)(DECAS)。该模型通过各种自然史状态模拟特定出生队列中与CRC相关的事件。校准利用了来自德国520万平均风险参与者的筛查结肠镜检查项目的74个患病率数据点,采用ABC方法。DECAS的CRC发病率输出结果与德国国家癌症登记数据进行了验证;筛查效果通过英国柔性乙状结肠镜筛查乙状结肠镜检查试验的17年数据和一项德国筛查结肠镜队列研究进行了验证。贝叶斯校准产生了1000组后验参数样本。利用校准后的参数,德国登记处观察到的特定年龄和性别的CRC患病率在DECAS预测的95%区间内。关于筛查效果,DECAS预测单次筛查乙状结肠镜检查和结肠镜检查可使17年累积CRC死亡率分别降低41%(95%区间30%-51%)和62%(95%区间55%-68%),落在用于验证的2项临床研究报告的95%置信区间内。我们展示了DECAS,这是首个用于CRC自然史和筛查的经贝叶斯校准的DES模型,兼顾了2种CRC肿瘤发生途径。经过验证的模型可作为评估CRC筛查策略(成本)效益的有效工具。

要点

本文展示了一种新的离散事件模拟模型DECAS,该模型对结直肠癌(CRC)发生和CRC筛查效果的腺瘤-癌和锯齿状肿瘤形成途径均进行了建模。DECAS基于贝叶斯推理方法,利用2003年至2014年德国筛查结肠镜检查项目的数据进行校准,该项目包含500多万名55岁及以上的首次平均风险参与者。DECAS在评估各种CRC筛查策略方面具有灵活性,并且可以区分结肠不同部位的筛查效果。DECAS通过大型筛查乙状结肠镜检查和结肠镜检查临床研究数据进行了验证,可进一步用于评估德国结直肠癌筛查策略的(成本)效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a65b/9869210/5660200eecbb/10.1177_23814683221145701-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验