Department of Pediatrics, Severance Children's Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
AITRICS, Seoul, South Korea.
Crit Care. 2019 Aug 14;23(1):279. doi: 10.1186/s13054-019-2561-z.
The rapid development in big data analytics and the data-rich environment of intensive care units together provide unprecedented opportunities for medical breakthroughs in the field of critical care. We developed and validated a machine learning-based model, the Pediatric Risk of Mortality Prediction Tool (PROMPT), for real-time prediction of all-cause mortality in pediatric intensive care units.
Utilizing two separate retrospective observational cohorts, we conducted model development and validation using a machine learning algorithm with a convolutional neural network. The development cohort comprised 1445 pediatric patients with 1977 medical encounters admitted to intensive care units from January 2011 to December 2017 at Severance Hospital (Seoul, Korea). The validation cohort included 278 patients with 364 medical encounters admitted to the pediatric intensive care unit from January 2016 to November 2017 at Samsung Medical Center.
Using seven vital signs, along with patient age and body weight on intensive care unit admission, PROMPT achieved an area under the receiver operating characteristic curve in the range of 0.89-0.97 for mortality prediction 6 to 60 h prior to death. Our results demonstrated that PROMPT provided high sensitivity with specificity and outperformed the conventional severity scoring system, the Pediatric Index of Mortality, in predictive ability. Model performance was indistinguishable between the development and validation cohorts.
PROMPT is a deep model-based, data-driven early warning score tool that can predict mortality in critically ill children and may be useful for the timely identification of deteriorating patients.
大数据分析的快速发展和重症监护病房的数据丰富环境为重症监护领域的医学突破提供了前所未有的机会。我们开发并验证了一种基于机器学习的模型,即儿科死亡风险预测工具(PROMPT),用于实时预测儿科重症监护病房的全因死亡率。
利用两个独立的回顾性观察队列,我们使用具有卷积神经网络的机器学习算法进行了模型的开发和验证。开发队列包括 2011 年 1 月至 2017 年 12 月期间在首尔 Severance 医院重症监护病房接受治疗的 1445 名儿科患者的 1977 次医疗就诊。验证队列包括 2016 年 1 月至 2017 年 11 月期间在三星医疗中心儿科重症监护病房接受治疗的 278 名患者的 364 次医疗就诊。
使用七个生命体征,以及患者进入重症监护病房时的年龄和体重,PROMPT 在死亡前 6 至 60 小时预测死亡率的受试者工作特征曲线下面积在 0.89-0.97 之间。我们的结果表明,PROMPT 在预测能力方面提供了高灵敏度和特异性,优于传统的严重程度评分系统,即儿科死亡率指数。模型性能在开发和验证队列之间无差异。
PROMPT 是一种基于深度模型和数据驱动的早期预警评分工具,可以预测危重症儿童的死亡率,可能有助于及时识别病情恶化的患者。