Suppr超能文献

利用用药信息对重症监护病房再入院患者的长期住院进行早期预测。

Early prediction of long hospital stay for Intensive Care units readmission patients using medication information.

作者信息

Zhang Min, Kuo Tsung-Ting

机构信息

Applied Statistics, University of Michigan, Ann Arbor, MI, 48109, USA.

UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, CA, 92093, USA.

出版信息

Comput Biol Med. 2024 May;174:108451. doi: 10.1016/j.compbiomed.2024.108451. Epub 2024 Apr 8.

Abstract

OBJECTIVE

Predicting Intensive Care Unit (ICU) Length of Stay (LOS) accurately can improve patient wellness, hospital operations, and the health system's financial status. This study focuses on predicting the prolonged ICU LOS (≥3 days) of the 2nd admission, utilizing short historical data (1st admission only) for early-stage prediction, as well as incorporating medication information.

MATERIALS AND METHODS

We selected 18,572 ICU patients' records from the MIMIC-IV database for this study. We applied five machine learning classifiers: Logistic regression (LR), Random Forest (RF), Support Vector Machine (SVM), AdaBoost (AB) and XGBoost (XGB). We computed both the sum dose and the average dose for the medication and included them in our model.

RESULTS

The performance of the RF model demonstrates the highest level of accuracy compared to other models, as indicated by an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.716 and an Expected Calibration Error (ECE) of 0.023.

DISCUSSION

The calibration improved all five classifiers (LR, RF, SVC, AB, XGB) in terms of ECE. The most important two features for RF are the length of 1st admission and the patient's age when they visited the hospital. The most important medication features are Phytonadione and Metoprolol Succinate XL. Also, both the sum and the average dose for the medication features contributed to the prediction task.

CONCLUSION

Our model showed the capability to predict the prolonged ICU LOS of the 2nd admission by utilizing the demographic, diagnosis, and medication information from the 1st admission. This method can potentially support the prevention of patient complications and enhance resource allocation in hospitals.

摘要

目的

准确预测重症监护病房(ICU)住院时间(LOS)可改善患者健康状况、医院运营及卫生系统的财务状况。本研究着重于利用短期历史数据(仅首次入院数据)进行早期预测,同时纳入用药信息,以预测第二次入院时延长的ICU住院时间(≥3天)。

材料与方法

我们从MIMIC-IV数据库中选取了18572例ICU患者的记录用于本研究。我们应用了五种机器学习分类器:逻辑回归(LR)、随机森林(RF)、支持向量机(SVM)、自适应增强(AB)和极端梯度提升(XGB)。我们计算了药物的总剂量和平均剂量,并将其纳入我们的模型。

结果

与其他模型相比,RF模型的性能显示出最高水平的准确性,其受试者工作特征曲线下面积(AUC)为0.716,预期校准误差(ECE)为0.023。

讨论

在校准方面,所有五个分类器(LR、RF、SVC、AB、XGB)的ECE均有所改善。RF最重要的两个特征是首次入院时长和患者就诊时的年龄。最重要的用药特征是维生素K1和琥珀酸美托洛尔缓释片。此外,用药特征的总剂量和平均剂量均对预测任务有贡献。

结论

我们的模型显示出通过利用首次入院时的人口统计学、诊断和用药信息来预测第二次入院时延长的ICU住院时间的能力。这种方法可能有助于预防患者并发症并加强医院的资源分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41a8/11385457/b1bd2a504a75/nihms-2020726-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验