de Weerd Hendrik A, Åkesson Julia, Guala Dimitri, Gustafsson Mika, Lubovac-Pilav Zelmina
School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde 541 45, Sweden.
Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden.
Bioinform Adv. 2022 Jan 25;2(1):vbac006. doi: 10.1093/bioadv/vbac006. eCollection 2022.
Network-based disease modules have proven to be a powerful concept for extracting knowledge about disease mechanisms, predicting for example disease risk factors and side effects of treatments. Plenty of tools exist for the purpose of module inference, but less effort has been put on simultaneously utilizing knowledge about regulatory mechanisms for predicting disease module hub regulators.
We developed MODalyseR, a novel software for identifying disease module regulators and reducing modules to the most disease-associated genes. This pipeline integrates and extends previously published software packages MODifieR and ComHub and hereby provides a user-friendly network medicine framework combining the concepts of disease modules and hub regulators for precise disease gene identification from transcriptomics data. To demonstrate the usability of the tool, we designed a case study for multiple sclerosis that revealed IKZF1 as a promising hub regulator, which was supported by independent ChIP-seq data.
MODalyseR is available as a Docker image at https://hub.docker.com/r/ddeweerd/modalyser with user guide and installation instructions found at https://gustafsson-lab.gitlab.io/MODalyseR/.
Supplementary data are available at online.
基于网络的疾病模块已被证明是一种强大的概念,可用于提取有关疾病机制的知识,例如预测疾病风险因素和治疗的副作用。存在大量用于模块推断的工具,但在同时利用调控机制知识来预测疾病模块枢纽调节因子方面投入的精力较少。
我们开发了MODalyseR,这是一种用于识别疾病模块调节因子并将模块精简为与疾病关联度最高的基因的新型软件。该流程整合并扩展了先前发布的软件包MODifieR和ComHub,从而提供了一个用户友好的网络医学框架,将疾病模块和枢纽调节因子的概念相结合,以便从转录组学数据中精确识别疾病基因。为了证明该工具的可用性,我们针对多发性硬化症设计了一个案例研究,结果显示IKZF1是一个有前景的枢纽调节因子,独立的染色质免疫沉淀测序(ChIP-seq)数据也支持这一结果。
MODalyseR可作为Docker镜像在https://hub.docker.com/r/ddeweerd/modalyser获取,用户指南和安装说明可在https://gustafsson-lab.gitlab.io/MODalyseR/找到。
补充数据可在网上获取。