文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

关于通过电子束辐照聚合的新型聚乙二醇二丙烯酸酯/明胶杂化水凝胶材料性能的研究。

A study on the material properties of novel PEGDA/gelatin hybrid hydrogels polymerized by electron beam irradiation.

作者信息

Şener Raman Tuğçe, Kuehnert Mathias, Daikos Olesya, Scherzer Tom, Krömmelbein Catharina, Mayr Stefan G, Abel Bernd, Schulze Agnes

机构信息

Institute of Surface Engineering (IOM), Leipzig, Germany.

Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Institute of Chemical Technology of the University Leipzig, Leipzig, Germany.

出版信息

Front Chem. 2023 Jan 9;10:1094981. doi: 10.3389/fchem.2022.1094981. eCollection 2022.


DOI:10.3389/fchem.2022.1094981
PMID:36700077
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9868307/
Abstract

Gelatin-based hydrogels are highly desirable biomaterials for use in wound dressing, drug delivery, and extracellular matrix components due to their biocompatibility and biodegradability. However, insufficient and uncontrollable mechanical properties and degradation are the major obstacles to their application in medical materials. Herein, we present a simple but efficient strategy for a novel hydrogel by incorporating the synthetic hydrogel monomer polyethylene glycol diacrylate (PEGDA, offering high mechanical stability) into a biological hydrogel compound (gelatin) to provide stable mechanical properties and biocompatibility at the resulting hybrid hydrogel. In the present work, PEGDA/gelatin hybrid hydrogels were prepared by electron irradiation as a reagent-free crosslinking technology and without using chemical crosslinkers, which carry the risk of releasing toxic byproducts into the material. The viscoelasticity, swelling behavior, thermal stability, and molecular structure of synthesized hybrid hydrogels of different compound ratios and irradiation doses were investigated. Compared with the pure gelatin hydrogel, 21/9 wt./wt. % PEGDA/gelatin hydrogels at 6 kGy exhibited approximately up to 1078% higher storage modulus than a pure gelatin hydrogel, and furthermore, it turned out that the mechanical stability increased with increasing irradiation dose. The chemical structure of the hybrid hydrogels was analyzed by Fourier-transform infrared (FTIR) spectroscopy, and it was confirmed that both compounds, PEGDA and gelatin, were equally present. Scanning electron microscopy images of the samples showed fracture patterns that confirmed the findings of viscoelasticity increasing with gelatin concentration. Infrared microspectroscopy images showed that gelatin and PEGDA polymer fractions were homogeneously mixed and a uniform hybrid material was obtained after electron beam synthesis. In short, this study demonstrates that both the presence of PEGDA improved the material properties of PEGDA/gelatin hybrid hydrogels and the resulting properties are fine-tuned by varying the irradiation dose and PEGDA/gelatin concentration.

摘要

基于明胶的水凝胶因其生物相容性和生物可降解性,是用于伤口敷料、药物递送和细胞外基质成分的理想生物材料。然而,机械性能不足且不可控以及降解问题是其在医用材料应用中的主要障碍。在此,我们提出了一种简单而有效的策略来制备新型水凝胶,即将合成水凝胶单体聚乙二醇二丙烯酸酯(PEGDA,具有高机械稳定性)掺入生物水凝胶化合物(明胶)中,以使所得的杂化水凝胶具有稳定的机械性能和生物相容性。在本研究中,PEGDA/明胶杂化水凝胶是通过电子辐照制备的,这是一种无试剂交联技术,无需使用化学交联剂,因为化学交联剂存在向材料中释放有毒副产物的风险。研究了不同化合物比例和辐照剂量的合成杂化水凝胶的粘弹性、溶胀行为、热稳定性和分子结构。与纯明胶水凝胶相比,6 kGy下21/9 wt./wt.%的PEGDA/明胶水凝胶的储能模量比纯明胶水凝胶高出约1078%,此外,结果表明机械稳定性随辐照剂量的增加而提高。通过傅里叶变换红外(FTIR)光谱分析了杂化水凝胶的化学结构,证实PEGDA和明胶这两种化合物均存在。样品的扫描电子显微镜图像显示的断裂模式证实了粘弹性随明胶浓度增加而增加的结果。红外显微光谱图像表明,明胶和PEGDA聚合物组分均匀混合,电子束合成后得到了均匀的杂化材料。简而言之,本研究表明,PEGDA的存在改善了PEGDA/明胶杂化水凝胶的材料性能,并且通过改变辐照剂量和PEGDA/明胶浓度可以微调所得性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/59df4be779d1/fchem-10-1094981-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/e0994f868d9a/fchem-10-1094981-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/a6a918d9de10/fchem-10-1094981-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/cd6068531dc1/fchem-10-1094981-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/b1765329f810/fchem-10-1094981-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/74f09cae7472/fchem-10-1094981-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/d646c8b8fed4/fchem-10-1094981-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/75b312a8d3ff/fchem-10-1094981-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/59df4be779d1/fchem-10-1094981-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/e0994f868d9a/fchem-10-1094981-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/a6a918d9de10/fchem-10-1094981-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/cd6068531dc1/fchem-10-1094981-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/b1765329f810/fchem-10-1094981-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/74f09cae7472/fchem-10-1094981-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/d646c8b8fed4/fchem-10-1094981-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/75b312a8d3ff/fchem-10-1094981-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbd/9868307/59df4be779d1/fchem-10-1094981-g008.jpg

相似文献

[1]
A study on the material properties of novel PEGDA/gelatin hybrid hydrogels polymerized by electron beam irradiation.

Front Chem. 2023-1-9

[2]
Tailoring the material properties of gelatin hydrogels by high energy electron irradiation.

J Mater Chem B. 2014-7-21

[3]
Development of a Photo-Crosslinking, Biodegradable GelMA/PEGDA Hydrogel for Guided Bone Regeneration Materials.

Materials (Basel). 2018-8-3

[4]
Electroconductive Photo-Curable PEGDA-Gelatin/PEDOT:PSS Hydrogels for Prospective Cardiac Tissue Engineering Application.

Front Bioeng Biotechnol. 2022-6-24

[5]
Methacrylated pullulan/polyethylene (glycol) diacrylate composite hydrogel for cartilage tissue engineering.

J Biomater Sci Polym Ed. 2021-6

[6]
Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair.

J Biomater Appl. 2022-1

[7]
Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.

J Biomed Mater Res A. 2016-10

[8]
Fabrication Parameter-Dependent Physico-Chemical Properties of Thiolated Gelatin/PEGDA Interpenetrating Network Hydrogels.

Tissue Eng Regen Med. 2022-4

[9]
Gelatin-Based Matrices as a Tunable Platform To Study in Vitro and in Vivo 3D Cell Invasion.

ACS Appl Bio Mater. 2019-2-18

[10]
Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels.

Acta Biomater. 2010-4-21

引用本文的文献

[1]
Design and Characterization of Hybrid Gelatin/PEGDA Hydrogels with Tunable Viscoelastic Properties.

Biomacromolecules. 2025-8-11

[2]
Polymer/AgPt bimetallic nanoparticle synergy: optimizing plasmonic durability through controlled synthesis and matrix integration.

Nanoscale Adv. 2025-5-7

[3]
Enhanced Bioprinting of 3D Corneal Stroma Patches with Reliability, Assessing Product Consistency and Quality through Optimized Electron Beam Sterilization.

Adv Healthc Mater. 2025-4

[4]
Role of Ionizing Radiation Techniques in Polymeric Hydrogel Synthesis for Tissue Engineering Applications.

Gels. 2025-1-8

[5]
Study of the Influence of Structure-Chemical Properties of Electron Beam-Polymerized PEGDA/Gelatin Hybrid Hydrogels on the Uptake and Release Dynamics of Different Photosensitizer Molecules.

Biomacromolecules. 2025-2-10

[6]
3-Sulfopropyl acrylate potassium-based polyelectrolyte hydrogels: sterilizable synthetic material for biomedical application.

RSC Adv. 2024-9-11

[7]
Dual-Temperature/pH-Sensitive Hydrogels with Excellent Strength and Toughness Crosslinked Using Three Crosslinking Methods.

Gels. 2024-7-19

[8]
A Comprehensive Review of Radiation-Induced Hydrogels: Synthesis, Properties, and Multidimensional Applications.

Gels. 2024-6-2

[9]
Understanding the Role of Biofilms in Acute Recurrent Tonsillitis through 3D Bioprinting of a Novel Gelatin-PEGDA Hydrogel.

Bioengineering (Basel). 2024-2-21

[10]
Factors That Influence Base-Catalyzed Thiol-Ene Hydrogel Synthesis.

Gels. 2023-11-20

本文引用的文献

[1]
A Porous Hydrogel with High Mechanical Strength and Biocompatibility for Bone Tissue Engineering.

J Funct Biomater. 2022-9-3

[2]
Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing.

Bioact Mater. 2022-7-1

[3]
Development of a nanocapsule-loaded hydrogel for drug delivery for intraperitoneal administration.

Int J Pharm. 2022-6-25

[4]
E-Beam Cross-Linking of Complex Hydrogels Formulation: The Influence of Poly(Ethylene Oxide) Concentration on the Hydrogel Properties.

Gels. 2021-12-31

[5]
Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine.

Adv Mater. 2022-3

[6]
Construction of tissue-engineered skin with rete ridges using co-network hydrogels of gelatin methacrylated and poly(ethylene glycol) diacrylate.

Mater Sci Eng C Mater Biol Appl. 2021-10

[7]
Autoclaving of Poloxamer 407 hydrogel and its use as a drug delivery vehicle.

J Biomed Mater Res B Appl Biomater. 2021-3

[8]
Preparation and Characterization of pH Sensitive Chitosan/3-Glycidyloxypropyl Trimethoxysilane (GPTMS) Hydrogels by Sol-Gel Method.

Polymers (Basel). 2020-6-10

[9]
Matrix metalloproteinase 9-activatable peptide-conjugated hydrogel-based fluorogenic intraocular-lens sensor.

Biosens Bioelectron. 2020-8-15

[10]
Tailoring the material properties of gelatin hydrogels by high energy electron irradiation.

J Mater Chem B. 2014-7-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索