基于硫醇化明胶/PEGDA 互穿网络水凝胶的制备参数依赖性物理化学性质研究。

Fabrication Parameter-Dependent Physico-Chemical Properties of Thiolated Gelatin/PEGDA Interpenetrating Network Hydrogels.

机构信息

Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, 04620, Korea.

出版信息

Tissue Eng Regen Med. 2022 Apr;19(2):309-319. doi: 10.1007/s13770-021-00413-5. Epub 2021 Dec 14.

Abstract

BACKGROUND

The development of three-dimensional hydrogels using polymeric biomaterials is a key technology for tissue engineering and regenerative medicine. Successful tissue engineering requires the control and identification of the physicochemical properties of hydrogels.

METHODS

Interpenetrating network (IPN) hydrogel was developed using thiolated gelatin (GSH) and poly(ethylene glycol) diacrylate (PEGDA), with the aid of ammonium persulfate (APS) and N,N,N,N'-tetramethylethylenediamine (TEMED) as radical initiators. Each component was prepared in the following concentrations, respectively: 2.5 and 5% GSH (LG and HG), 12.5 and 25% PEGDA (LP and HP), 3% APS/1.5% TEMED (LI), and 4% APS/2% TEMED (HI). IPN hydrogel was fabricated by the mixing of GSH, PEGDA, and initiators in 5:4:1 volume ratios, and incubated at 37 °C for 30 min in the following 6 experimental formulations: (1) HG-LP-LI, (2) HG-LP-HI, (3) LG-HP-LI, (4) LG-HP-HI, (5) HG-HP-HI, and (6) HG-HP-LI. Herein, the physico-chemical characteristics of IPN hydrogels, including their morphological structures, hydrolytic degradation properties, mechanical properties, embedded protein release kinetics, and biocompatibility, were investigated.

RESULTS

The characteristics of the hydrogel were significantly manipulated by the concentration of the polymer, especially the conversion between HP and LP, rather than the concentration of the initiator, and no hydrogel formulation exhibited any toxicity to fibroblast and HaCaT cells.

CONCLUSION

We provide structural-physical relationships of the hydrogels by which means their physical properties could be conveniently controlled through component control, which could be versatilely utilized for various organizational engineering strategies.

摘要

背景

使用聚合生物材料开发三维水凝胶是组织工程和再生医学的关键技术。成功的组织工程需要控制和识别水凝胶的物理化学性质。

方法

使用巯基化明胶(GSH)和聚乙二醇二丙烯酸酯(PEGDA)通过过硫酸铵(APS)和 N,N,N',N'-四甲基乙二胺(TEMED)作为自由基引发剂开发互穿网络(IPN)水凝胶。每个组件分别按以下浓度制备:2.5 和 5%GSH(LG 和 HG),12.5 和 25%PEGDA(LP 和 HP),3%A PS/1.5%TEMED(LI)和 4%A PS/2%TEMED(HI)。通过将 GSH、PEGDA 和引发剂以 5:4:1 的体积比混合,在 37°C 下孵育 30 分钟,制备 IPN 水凝胶,并在以下 6 种实验配方中进行:(1)HG-LP-LI,(2)HG-LP-HI,(3)LG-HP-LI,(4)LG-HP-HI,(5)HG-HP-HI 和(6)HG-HP-LI。在此,研究了 IPN 水凝胶的物理化学特性,包括其形态结构、水解降解特性、力学性能、嵌入式蛋白质释放动力学和生物相容性。

结果

水凝胶的特性通过聚合物的浓度显著控制,特别是 HP 和 LP 之间的转换,而不是引发剂的浓度,并且没有水凝胶配方对成纤维细胞和 HaCaT 细胞表现出任何毒性。

结论

我们提供了水凝胶的结构-物理关系,通过该关系可以通过组分控制方便地控制其物理性质,这可以广泛用于各种组织工程策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索