Suppr超能文献

能够使用层次差异度量和并行计算在大规模上对微生物组功能谱进行全面且快速的比较。

enables comprehensive and rapid comparison of microbiome functional profiles on a large scale using hierarchical dissimilarity metrics and parallel computing.

作者信息

Zhang Yufeng, Jing Gongchao, Chen Yuzhu, Li Jinhua, Su Xiaoquan

机构信息

College of Computer Science and Technology, Qingdao University, Qingdao, Shandong 266071, China.

Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.

出版信息

Bioinform Adv. 2021 May 12;1(1):vbab003. doi: 10.1093/bioadv/vbab003. eCollection 2021.

Abstract

UNLABELLED

Functional beta-diversity analysis on numerous microbiomes interprets the linkages between metabolic functions and their meta-data. To evaluate the microbiome beta-diversity, widely used distance metrices only count overlapped gene families but omit their inherent relationships, resulting in erroneous distances due to the sparsity of high-dimensional function profiles. Here we propose (HMS) to tackle such problem. HMS contains two core components: (i) a dissimilarity algorithm that comprehensively measures functional distances among microbiomes using multi-level metabolic hierarchy and (ii) a fast Principal Co-ordinates Analysis (PCoA) implementation that deduces the beta-diversity pattern optimized by parallel computing. Results showed HMS can detect the variations of microbial functions in upper-level metabolic pathways, however, always missed by other methods. In addition, HMS accomplished the pairwise distance matrix and PCoA for 20 000 microbiomes in 3.9 h on a single computing node, which was 23 times faster and 80% less RAM consumption compared to existing methods, enabling the in-depth data mining among microbiomes on a high resolution. HMS takes microbiome functional profiles as input, produces their pairwise distance matrix and PCoA coordinates.

AVAILABILITY AND IMPLEMENTATION

It is coded in C/C++ with parallel computing and released in two alternative forms: a standalone software (https://github.com/qdu-bioinfo/hierarchical-meta-storms) and an equivalent R package (https://github.com/qdu-bioinfo/hrms).

SUPPLEMENTARY INFORMATION

Supplementary data are available at online.

摘要

未标注

对众多微生物群落进行的功能β多样性分析解释了代谢功能与其元数据之间的联系。为了评估微生物群落的β多样性,广泛使用的距离度量仅计算重叠的基因家族,却忽略了它们之间的内在关系,由于高维功能谱的稀疏性导致距离计算错误。在此,我们提出了层次元风暴(HMS)来解决此类问题。HMS包含两个核心组件:(i)一种差异算法,它使用多级代谢层次综合测量微生物群落之间的功能距离;(ii)一种快速主坐标分析(PCoA)实现,通过并行计算推导出优化的β多样性模式。结果表明,HMS能够检测到其他方法常常遗漏的上层代谢途径中微生物功能的变化。此外,HMS在单个计算节点上3.9小时内完成了20000个微生物群落的成对距离矩阵和PCoA分析,与现有方法相比,速度快23倍,内存消耗减少80%,能够在高分辨率下对微生物群落进行深入的数据挖掘。HMS以微生物群落功能谱作为输入,生成它们的成对距离矩阵和PCoA坐标。

可用性与实现方式

它用C/C++编码并采用并行计算,以两种替代形式发布:一个独立软件(https://github.com/qdu-bioinfo/hierarchical-meta-storms)和一个等效的R包(https://github.com/qdu-bioinfo/hrms)。

补充信息

补充数据可在网上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8c0/9710644/d6089bf97960/vbab003f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验