Suppr超能文献

鉴定和预测微生物组研究中的新颖性。

Identifying and Predicting Novelty in Microbiome Studies.

机构信息

Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China

Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.

出版信息

mBio. 2018 Nov 13;9(6):e02099-18. doi: 10.1128/mBio.02099-18.

Abstract

With the expansion of microbiome sequencing globally, a key challenge is to relate new microbiome samples to the existing space of microbiome samples. Here, we present Microbiome Search Engine (MSE), which enables the rapid search of query microbiome samples against a large, well-curated reference microbiome database organized by taxonomic similarity at the whole-microbiome level. Tracking the microbiome novelty score (MNS) over 8 years of microbiome depositions based on searching in more than 100,000 global 16S rRNA gene amplicon samples, we detected that the structural novelty of human microbiomes is approaching saturation and likely bounded, whereas that in environmental habitats remains 5 times higher. Via the microbiome focus index (MFI), which is derived from the MNS and microbiome attention score (MAS), we objectively track and compare the structural-novelty and attracted-attention scores of individual microbiome samples and projects, and we predict future trends in the field. For example, marine and indoor environments and mother-baby interactions are likely to receive disproportionate additional attention based on recent trends. Therefore, MNS, MAS, and MFI are proposed "alt-metrics" for evaluating a microbiome project or prospective developments in the microbiome field, both of which are done in the context of existing microbiome big data. We introduce two concepts to quantify the novelty of a microbiome. The first, the microbiome novelty score (MNS), allows identification of microbiomes that are especially different from what is already sequenced. The second, the microbiome attention score (MAS), allows identification of microbiomes that have many close neighbors, implying that considerable scientific attention is devoted to their study. By computing a microbiome focus index based on the MNS and MAS, we objectively track and compare the novelty and attention scores of individual microbiome samples and projects over time and predict future trends in the field; i.e., we work toward yielding fundamentally new microbiomes rather than filling in the details. Therefore, MNS, MAS, and MFI can serve as "alt-metrics" for evaluating a microbiome project or prospective developments in the microbiome field, both of which are done in the context of existing microbiome big data.

摘要

随着全球微生物组测序的扩展,一个关键的挑战是将新的微生物组样本与现有的微生物组样本空间相关联。在这里,我们展示了微生物组搜索引擎 (MSE),它能够在整个微生物组水平上通过分类相似性对大规模、精心整理的参考微生物组数据库进行快速查询,从而对查询微生物组样本进行快速搜索。基于对超过 10 万个全球 16S rRNA 基因扩增样本的搜索,我们跟踪了 8 年来微生物组沉积物的微生物组新颖性得分 (MNS),发现人类微生物组的结构新颖性已接近饱和,可能有界,而环境生境的新颖性仍然高出 5 倍。通过微生物组焦点指数 (MFI),它是从 MNS 和微生物组关注度得分 (MAS) 中推导出来的,我们客观地跟踪和比较了单个微生物组样本和项目的结构新颖性和吸引力得分,并预测了该领域的未来趋势。例如,基于最近的趋势,海洋和室内环境以及母婴互动可能会受到不成比例的额外关注。因此,MNS、MAS 和 MFI 被提议作为评估微生物组项目或微生物组领域未来发展的“替代指标”,这两种指标都是在现有微生物组大数据的背景下进行的。我们引入了两个概念来量化微生物组的新颖性。第一个是微生物组新颖性得分 (MNS),它允许识别与已测序的微生物组特别不同的微生物组。第二个是微生物组关注度得分 (MAS),它允许识别有许多近邻的微生物组,这意味着对它们的研究投入了大量的科学关注。通过计算基于 MNS 和 MAS 的微生物组焦点指数,我们客观地跟踪和比较了单个微生物组样本和项目随时间的新颖性和关注度得分,并预测了该领域的未来趋势;也就是说,我们致力于产生全新的微生物组,而不是填补细节。因此,MNS、MAS 和 MFI 可以作为评估微生物组项目或微生物组领域未来发展的“替代指标”,这两种指标都是在现有微生物组大数据的背景下进行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ee3/6234870/b4256d65478d/mbo0051841660001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验