Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
Yantai Campus of Binzhou Medical University, Yantai, People's Republic of China.
Int J Nanomedicine. 2023 Jan 18;18:307-322. doi: 10.2147/IJN.S394366. eCollection 2023.
Successful treatment of infectious bone defect remains a major challenge in the orthopaedic field. At present, the conventional treatment for infectious bone defects is surgical debridement and long-term systemic antibiotic use. It is necessary to develop a new strategy to achieve effective bone regeneration and local anti-infection for infectious bone defects.
Firstly, vancomycin / poly (lactic acid-glycolic acid) sustained release microspheres (VAN/PLGA-MS) were prepared. Then, through the dual-nozzle 3D printing technology, VAN/PLGA-MS was uniformly loaded into the pores of nano-hydroxyapatite (n-HA) and polylactic acid (PLA) scaffolds printed in a certain proportion, and a composite scaffold (VAN/MS-PLA/n-HA) was designed, which can not only promote bone repair but also resist local infection. Finally, the performance of the composite scaffold was evaluated by in vivo and in vitro biological evaluation.
The in vitro release test of microspheres showed that the release of VAN/PLGA-MS was relatively stable from the second day, and the average daily release concentration was about 15.75 μg/mL, which was higher than the minimum concentration specified in the guidelines. The bacteriostatic test in vitro showed that VAN/PLGA-MS had obvious inhibitory effect on Staphylococcus aureus ATCC-29213. Biological evaluation of VAN/MS-PLA/n-HA scaffolds in vitro showed that it can promote the proliferation of adipose stem cells. In vivo biological evaluation showed that VAN/MS-PLA/n-HA scaffold could significantly promote bone regeneration.
Our research shows that VAN/MS-PLA/n-HA scaffolds have satisfying biomechanical properties, effectively inhibit the growth of Staphylococcus aureus, with good biocompatibility, and effectiveness on repairing bone defects. The VAN/MS-PLA/n-HA scaffold provide the clinic with an application prospect in bone tissue engineering.
感染性骨缺损的成功治疗仍然是骨科领域的主要挑战。目前,感染性骨缺损的常规治疗方法是手术清创和长期全身使用抗生素。有必要开发一种新策略,以实现感染性骨缺损的有效骨再生和局部抗感染。
首先,制备万古霉素/聚(乳酸-羟基乙酸)缓释微球(VAN/PLGA-MS)。然后,通过双喷嘴 3D 打印技术,将 VAN/PLGA-MS 均匀地装载到按一定比例打印的纳米羟基磷灰石(n-HA)和聚乳酸(PLA)支架的孔中,设计了一种复合支架(VAN/MS-PLA/n-HA),既能促进骨修复,又能抵抗局部感染。最后,通过体内和体外生物学评价来评估复合支架的性能。
微球的体外释放试验表明,VAN/PLGA-MS 的释放从第二天开始相对稳定,平均日释放浓度约为 15.75μg/mL,高于指南规定的最低浓度。体外抑菌试验表明,VAN/PLGA-MS 对金黄色葡萄球菌 ATCC-29213 有明显的抑制作用。VAN/MS-PLA/n-HA 支架的体外生物学评价表明,它能促进脂肪干细胞的增殖。体内生物学评价表明,VAN/MS-PLA/n-HA 支架能显著促进骨再生。
我们的研究表明,VAN/MS-PLA/n-HA 支架具有令人满意的生物力学性能,能有效抑制金黄色葡萄球菌的生长,具有良好的生物相容性和修复骨缺损的有效性。VAN/MS-PLA/n-HA 支架为临床提供了在骨组织工程中应用的前景。