开发一个交互式网络仪表板,以方便对CPT编码计费不足的情况重新审查病理报告。

Development of an interactive web dashboard to facilitate the reexamination of pathology reports for instances of underbilling of CPT codes.

作者信息

Greenburg Jack, Lu Yunrui, Lu Shuyang, Kamau Uhuru, Hamilton Robert, Pettus Jason, Preum Sarah, Vaickus Louis, Levy Joshua

机构信息

Department of Computer Science, Middlebury College, Middlebury, VT, USA.

Program in Quantitative Biomedical Sciences, Dartmouth College Geisel School of Medicine, Hanover, NH, USA.

出版信息

J Pathol Inform. 2023 Jan 12;14:100187. doi: 10.1016/j.jpi.2023.100187. eCollection 2023.

Abstract

Current Procedural Terminology Codes is a numerical coding system used to bill for medical procedures and services and crucially, represents a major reimbursement pathway. Given that pathology services represent a consequential source of hospital revenue, understanding instances where codes may have been misassigned or underbilled is critical. Several algorithms have been proposed that can identify improperly billed CPT codes in existing datasets of pathology reports. Estimation of the fiscal impacts of these reports requires a coder (i.e., billing staff) to review the original reports and manually code them again. As the re-assignment of codes using machine learning algorithms can be done quickly, the bottleneck in validating these reassignments is in this manual re-coding process, which can prove cumbersome. This work documents the development of a rapidly deployable dashboard for examination of reports that the original coder may have misbilled. Our dashboard features the following main components: (1) a bar plot to show the predicted probabilities for each CPT code, (2) an interpretation plot showing how each word in the report combines to form the overall prediction, and (3) a place for the user to input the CPT code they have chosen to assign. This dashboard utilizes the algorithms developed to accurately identify CPT codes to highlight the codes missed by the original coders. In order to demonstrate the function of this web application, we recruited pathologists to utilize it to highlight reports that had codes incorrectly assigned. We expect this application to accelerate the validation of re-assigned codes through facilitating rapid review of false-positive pathology reports. In the future, we will use this technology to review thousands of past cases in order to estimate the impact of underbilling has on departmental revenue.

摘要

现行程序编码系统是一种用于为医疗程序和服务计费的数字编码系统,至关重要的是,它代表了一条主要的报销途径。鉴于病理服务是医院收入的一个重要来源,了解编码可能被错误分配或计费不足的情况至关重要。已经提出了几种算法,可以在现有的病理报告数据集中识别计费不当的现行程序编码(CPT)。估计这些报告的财务影响需要编码人员(即计费人员)审查原始报告并再次手动编码。由于使用机器学习算法重新分配编码可以快速完成,验证这些重新分配的瓶颈在于这个手动重新编码过程,这可能会很繁琐。这项工作记录了一个可快速部署的仪表板的开发,用于检查原始编码人员可能计费错误的报告。我们的仪表板具有以下主要组件:(1)一个条形图,用于显示每个CPT编码的预测概率;(2)一个解释图,显示报告中的每个单词如何组合形成总体预测;(3)一个供用户输入他们选择分配的CPT编码的地方。这个仪表板利用开发的算法准确识别CPT编码,以突出显示原始编码人员遗漏的编码。为了演示这个网络应用程序的功能,我们招募了病理学家使用它来突出显示编码分配错误的报告。我们期望这个应用程序通过促进对假阳性病理报告的快速审查来加速重新分配编码的验证。未来,我们将使用这项技术审查数千个过去的病例,以估计计费不足对部门收入的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/007e/9867971/fe9b6df99c08/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索