Suppr超能文献

用于免疫介导疾病的预测性、预防性、个性化和参与性治疗的数字孪生技术。

Digital Twins for Predictive, Preventive Personalized, and Participatory Treatment of Immune-Mediated Diseases.

作者信息

Benson Mikael

机构信息

Medical Digital Twin Research Group, Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.

出版信息

Arterioscler Thromb Vasc Biol. 2023 Mar;43(3):410-416. doi: 10.1161/ATVBAHA.122.318331. Epub 2023 Jan 26.

Abstract

Digital twins are computational models of complex systems, which aim to understand and optimize those systems more effectively than would be possible in real life. Ideally, digital twins can be translated to individual patients, to characterize and computationally treat their diseases with thousands of drugs, to select the drug or drugs that cure the patients. The background problem is that many patients do not respond adequately to drug treatment. This problem reflects a wide gap between the complexity of diseases and clinical practice. Each disease may involve altered interactions between thousands of genes that vary between different cell types in different organs. To our knowledge, these altered interactions have not been characterized on a genome-, cellulome-, and organ-wide scale in any disease. Thus, clinical translation of the digital twin ideal for predictive, preventive, personalized and participatory treatment involves formidable challenges, which are close to the limits of, or beyond today's technologies. Here, I discuss recent developments and challenges in relation to that ideal focusing on immune-mediated inflammatory diseases, as well as examples from other diseases.

摘要

数字孪生是复杂系统的计算模型,其旨在比在现实生活中更有效地理解和优化这些系统。理想情况下,数字孪生可以转化应用于个体患者,以表征其疾病并通过数千种药物进行计算化治疗,从而选择出能治愈患者的一种或多种药物。背后的问题是,许多患者对药物治疗反应不佳。这个问题反映出疾病复杂性与临床实践之间存在巨大差距。每种疾病可能涉及数千个基因之间相互作用的改变,而这些基因在不同器官的不同细胞类型之间存在差异。据我们所知,在任何疾病中,这些改变的相互作用尚未在全基因组、全细胞组和全器官范围内得到表征。因此,数字孪生用于预测性、预防性、个性化和参与性治疗的临床转化面临巨大挑战,这些挑战已接近或超出当今技术的极限。在此,我将讨论围绕这一理想目标的最新进展和挑战,重点关注免疫介导的炎症性疾病,以及来自其他疾病的例子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验