通过神经回路的地形模块性进行信号去噪。
Signal denoising through topographic modularity of neural circuits.
机构信息
Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-BRAIN Institute I, Jülich Research Centre, Jülich, Germany.
Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
出版信息
Elife. 2023 Jan 26;12:e77009. doi: 10.7554/eLife.77009.
Information from the sensory periphery is conveyed to the cortex via structured projection pathways that spatially segregate stimulus features, providing a robust and efficient encoding strategy. Beyond sensory encoding, this prominent anatomical feature extends throughout the neocortex. However, the extent to which it influences cortical processing is unclear. In this study, we combine cortical circuit modeling with network theory to demonstrate that the sharpness of topographic projections acts as a bifurcation parameter, controlling the macroscopic dynamics and representational precision across a modular network. By shifting the balance of excitation and inhibition, topographic modularity gradually increases task performance and improves the signal-to-noise ratio across the system. We demonstrate that in biologically constrained networks, such a denoising behavior is contingent on recurrent inhibition. We show that this is a robust and generic structural feature that enables a broad range of behaviorally relevant operating regimes, and provide an in-depth theoretical analysis unraveling the dynamical principles underlying the mechanism.
感觉外围的信息通过结构化的投射途径传递到皮层,这些途径在空间上分离刺激特征,提供了一种强大而有效的编码策略。除了感觉编码之外,这种突出的解剖学特征还延伸到整个新皮层。然而,它在多大程度上影响皮质处理尚不清楚。在这项研究中,我们将皮质回路建模与网络理论相结合,证明了地形投射的锐度作为分岔参数,控制了模块化网络中的宏观动力学和表示精度。通过改变兴奋和抑制的平衡,地形模块性逐渐提高了任务绩效,并提高了整个系统的信噪比。我们证明,在受生物约束的网络中,这种去噪行为取决于递归抑制。我们表明,这是一种稳健和通用的结构特征,能够实现广泛的与行为相关的工作模式,并提供深入的理论分析,揭示机制背后的动力学原理。
相似文献
Phys Med Biol. 2021-1-26
Elife. 2020-12-17
J Magn Reson Imaging. 2019-4-22
Comput Biol Med. 2023-1
Front Comput Neurosci. 2019-12-5
本文引用的文献
Nat Methods. 2020-2-3
Front Comput Neurosci. 2019-12-5
Vision (Basel). 2019-1-26
Neurosci Conscious. 2019-9-10
Proc Natl Acad Sci U S A. 2019-3-13
Front Comput Neurosci. 2018-11-6
Front Neuroinform. 2018-8-3
Elife. 2018-7-10
PLoS Comput Biol. 2018-6-5