Suppr超能文献

连接结构与功能:初级视觉皮层中序列学习和预测的模型。

Bridging structure and function: A model of sequence learning and prediction in primary visual cortex.

机构信息

Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany.

Neural Network Dynamics and Computation, Institute of Genetics, University of Bonn, Bonn, Germany.

出版信息

PLoS Comput Biol. 2018 Jun 5;14(6):e1006187. doi: 10.1371/journal.pcbi.1006187. eCollection 2018 Jun.

Abstract

Recent experiments have demonstrated that visual cortex engages in spatio-temporal sequence learning and prediction. The cellular basis of this learning remains unclear, however. Here we present a spiking neural network model that explains a recent study on sequence learning in the primary visual cortex of rats. The model posits that the sequence learning and prediction abilities of cortical circuits result from the interaction of spike-timing dependent plasticity (STDP) and homeostatic plasticity mechanisms. It also reproduces changes in stimulus-evoked multi-unit activity during learning. Furthermore, it makes precise predictions regarding how training shapes network connectivity to establish its prediction ability. Finally, it predicts that the adapted connectivity gives rise to systematic changes in spontaneous network activity. Taken together, our model establishes a new conceptual bridge between the structure and function of cortical circuits in the context of sequence learning and prediction.

摘要

最近的实验表明,视觉皮层参与了时空序列学习和预测。然而,这种学习的细胞基础尚不清楚。在这里,我们提出了一个尖峰神经网络模型,该模型解释了最近关于大鼠初级视觉皮层序列学习的一项研究。该模型假设,皮质回路的序列学习和预测能力是由尖峰时间依赖可塑性(STDP)和动态平衡可塑性机制相互作用的结果。它还再现了学习过程中刺激诱发的多单位活动的变化。此外,它对训练如何塑造网络连接以建立其预测能力做出了精确的预测。最后,它预测适应的连接会导致自发网络活动的系统变化。总的来说,我们的模型在序列学习和预测的背景下,在皮质电路的结构和功能之间建立了一个新的概念桥梁。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验