Suppr超能文献

基于 fMRI 估计单个神经元的平均视觉感受野大小。

Estimating average single-neuron visual receptive field sizes by fMRI.

机构信息

Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium;

Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany.

出版信息

Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6425-6434. doi: 10.1073/pnas.1809612116. Epub 2019 Mar 13.

Abstract

The noninvasive estimation of neuronal receptive field (RF) properties in vivo allows a detailed understanding of brain organization as well as its plasticity by longitudinal following of potential changes. Visual RFs measured invasively by electrophysiology in animal models have traditionally provided a great extent of our current knowledge about the visual brain and its disorders. Voxel-based estimates of population RF (pRF) by functional magnetic resonance imaging (fMRI) in humans revolutionized the field and have been used extensively in numerous studies. However, current methods cannot estimate single-neuron RF sizes as they reflect large populations of neurons with individual RF scatter. Here, we introduce an approach to estimate RF size using spatial frequency selectivity to checkerboard patterns. This method allowed us to obtain noninvasive, average single-neuron RF estimates over a large portion of human early visual cortex. These estimates were significantly smaller compared with prior pRF methods. Furthermore, fMRI and electrophysiology experiments in nonhuman primates demonstrated an exceptionally good match, validating the approach.

摘要

在体无创估计神经元感受野 (RF) 特性,通过对潜在变化的纵向跟踪,可深入了解大脑组织及其可塑性。动物模型中通过电生理学测量的视觉 RF 传统上为我们当前对视觉大脑及其障碍的了解提供了很大程度的帮助。基于体素的功能磁共振成像 (fMRI) 对人群 RF (pRF) 的估计在该领域引发了变革,并已在众多研究中广泛使用。然而,目前的方法无法估计单个神经元 RF 的大小,因为它们反映了具有个体 RF 分散的大量神经元。在这里,我们引入了一种使用空间频率选择性来估计棋盘模式 RF 大小的方法。该方法使我们能够在人类早期视觉皮层的很大一部分区域获得非侵入性的平均单个神经元 RF 估计。与之前的 pRF 方法相比,这些估计值明显较小。此外,非人类灵长类动物的 fMRI 和电生理学实验表现出极好的匹配,验证了该方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d00/6442598/d3539c14b329/pnas.1809612116fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验