掺杂石墨烯模拟细菌NADH氧化酶用于哺乳动物一步法补充NAD

Doped Graphene To Mimic the Bacterial NADH Oxidase for One-Step NAD Supplementation in Mammals.

作者信息

Liu Xi, Li Jingkun, Zitolo Andrea, Gao Meng, Jiang Jun, Geng Xiangtian, Xie Qianqian, Wu Di, Zheng Huizhen, Cai Xiaoming, Lu Jianmei, Jaouen Frédéric, Li Ruibin

机构信息

State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China.

School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China.

出版信息

J Am Chem Soc. 2023 Feb 8;145(5):3108-3120. doi: 10.1021/jacs.2c12336. Epub 2023 Jan 26.

Abstract

Nicotinamide adenine dinucleotide (NAD) is a critical regulator of metabolic networks, and declining levels of its oxidized form, NAD, are closely associated with numerous diseases. While supplementing cells with precursors needed for NAD synthesis has shown poor efficacy in combatting NAD decline, an alternative strategy is the development of synthetic materials that catalyze the oxidation of NADH into NAD, thereby taking over the natural role of the NADH oxidase (NOX) present in bacteria. Herein, we discovered that metal-nitrogen-doped graphene (MNGR) materials can catalyze the oxidation of NADH into NAD. Among MNGR materials with different transition metals, Fe-, Co-, and Cu-NGR displayed strong catalytic activity combined with >80% conversion of NADH into NAD, similar specificity to NOX for abstracting hydrogen from the pyridine ring of nicotinamide, and higher selectivity than 51 other nanomaterials. The NOX-like activity of FeNGR functioned well in diverse cell lines. As a proof of concept of the in vivo application, we showed that FeNGR could specifically target the liver and remedy the metabolic flux anomaly in obesity mice with NAD-deficient cells. Overall, our study provides a distinct insight for exploration of drug candidates by design of synthetic materials to mimic the functions of unique enzymes (e.g., NOX) in bacteria.

摘要

烟酰胺腺嘌呤二核苷酸(NAD)是代谢网络的关键调节因子,其氧化形式NAD水平的下降与多种疾病密切相关。虽然用NAD合成所需的前体补充细胞在对抗NAD下降方面效果不佳,但一种替代策略是开发能催化NADH氧化为NAD的合成材料,从而取代细菌中存在的NADH氧化酶(NOX)的天然作用。在此,我们发现金属氮掺杂石墨烯(MNGR)材料能催化NADH氧化为NAD。在具有不同过渡金属的MNGR材料中,Fe-、Co-和Cu-NGR表现出较强的催化活性,NADH转化为NAD的转化率>80%,对从烟酰胺吡啶环提取氢的特异性与NOX相似,且选择性高于其他51种纳米材料。FeNGR的类NOX活性在多种细胞系中均表现良好。作为体内应用概念验证,我们表明FeNGR可特异性靶向肝脏,并纠正肥胖小鼠中NAD缺乏细胞的代谢通量异常。总体而言,我们的研究为通过设计合成材料模拟细菌中独特酶(如NOX)的功能来探索候选药物提供了独特见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索