文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米酶:文献计量学综述。

Nanozymes: a bibliometrics review.

机构信息

School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.

School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China.

出版信息

J Nanobiotechnology. 2024 Nov 13;22(1):704. doi: 10.1186/s12951-024-02907-5.


DOI:10.1186/s12951-024-02907-5
PMID:39538291
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11562681/
Abstract

As novel multifunctional materials that merge enzyme-like capabilities with the distinctive traits of nanomaterials, nanozymes have made significant strides in interdisciplinary research areas spanning materials science, bioscience, and beyond. This article, for the first time, employed bibliometric methods to conduct an in-depth statistical analysis of the global nanozymes research and demonstrate research progress, hotspots and trends. Drawing on data from the Web of Science Core Collection database, we comprehensively retrieved the publications from 2004 to 2024. The burgeoning interest in nanozymes research across various nations indicated a growing and widespread trend. This article further systematically elaborated the enzyme-like activities, matrix, multifunctional properties, catalytic mechanisms and various applications of nanozymes, and the field encounters challenges. Despite notable progress, and requires deeper exploration guide the future research directions. This field harbors broad potential for future developments, promising to impact various aspects of technology and society.

摘要

作为将酶样功能与纳米材料独特特性融合在一起的新型多功能材料,纳米酶在材料科学、生物科学等多个跨学科研究领域取得了重大进展。本文首次采用文献计量学方法对全球纳米酶研究进行深入的统计分析,并展示了研究进展、热点和趋势。本文利用来自 Web of Science Core Collection 数据库的数据,全面检索了 2004 年至 2024 年的出版物。不同国家对纳米酶研究的浓厚兴趣表明了这一趋势正在不断增长和普及。本文还系统地阐述了纳米酶的酶样活性、基质、多功能特性、催化机制和各种应用,以及该领域面临的挑战。尽管取得了显著的进展,但仍需要更深入的探索来指导未来的研究方向。该领域具有广阔的发展潜力,有望影响技术和社会的各个方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/4a57333e4ba8/12951_2024_2907_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/32f6bdb1facd/12951_2024_2907_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/1d24e6d1ed0b/12951_2024_2907_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/60a2b8e96d54/12951_2024_2907_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/a6f17573e7be/12951_2024_2907_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/e2e91c2f2cb5/12951_2024_2907_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/fdb56370ed93/12951_2024_2907_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/5fe0c68f2000/12951_2024_2907_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/8860867ee484/12951_2024_2907_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/7ce6b2b49418/12951_2024_2907_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/b98626badd93/12951_2024_2907_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/224516cfc331/12951_2024_2907_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/e1eae21e19ec/12951_2024_2907_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/54425f2de406/12951_2024_2907_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/5fcdb0ba4fda/12951_2024_2907_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/23a3064a8b47/12951_2024_2907_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/ae23a86c5645/12951_2024_2907_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/71f9e36fc4c7/12951_2024_2907_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/5050be173db3/12951_2024_2907_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/3c71b0085380/12951_2024_2907_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/4a57333e4ba8/12951_2024_2907_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/32f6bdb1facd/12951_2024_2907_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/1d24e6d1ed0b/12951_2024_2907_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/60a2b8e96d54/12951_2024_2907_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/a6f17573e7be/12951_2024_2907_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/e2e91c2f2cb5/12951_2024_2907_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/fdb56370ed93/12951_2024_2907_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/5fe0c68f2000/12951_2024_2907_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/8860867ee484/12951_2024_2907_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/7ce6b2b49418/12951_2024_2907_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/b98626badd93/12951_2024_2907_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/224516cfc331/12951_2024_2907_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/e1eae21e19ec/12951_2024_2907_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/54425f2de406/12951_2024_2907_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/5fcdb0ba4fda/12951_2024_2907_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/23a3064a8b47/12951_2024_2907_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/ae23a86c5645/12951_2024_2907_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/71f9e36fc4c7/12951_2024_2907_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/5050be173db3/12951_2024_2907_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/3c71b0085380/12951_2024_2907_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a860/11562681/4a57333e4ba8/12951_2024_2907_Fig20_HTML.jpg

相似文献

[1]
Nanozymes: a bibliometrics review.

J Nanobiotechnology. 2024-11-13

[2]
Nanozymes in biomedicine: Unraveling trends, research foci, and future trajectories via bibliometric insights (from 2007 to 2024).

Int J Biol Macromol. 2025-5

[3]
Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II).

Chem Soc Rev. 2019-2-18

[4]
Recent Advances in Nanozyme Research.

Adv Mater. 2018-12-27

[5]
Bibliometric Analysis and Network Visualization of Nanozymes for Microbial Theranostics in the Last Decade.

Appl Biochem Biotechnol. 2025-3

[6]
Single-Atom-Based Nanoenzyme in Tissue Repair.

ACS Nano. 2024-5-21

[7]
Recent advances in MOF-based nanozymes: Synthesis, activities, and bioapplications.

Biosens Bioelectron. 2024-11-1

[8]
Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications.

Chem Rev. 2019-2-25

[9]
Catalytic Mechanisms of Nanozymes and Their Applications in Biomedicine.

Bioconjug Chem. 2019-4-22

[10]
Enzyme mimic nanomaterials as nanozymes with catalytic attributes.

Colloids Surf B Biointerfaces. 2023-1

引用本文的文献

[1]
Nanomedicine in cardiovascular and cerebrovascular diseases: targeted nanozyme therapies and their clinical potential and current challenges.

J Nanobiotechnology. 2025-7-28

[2]
Peroxidase-Mimicking Nanozymes of Nitrogen Heteroatom-Containing Graphene Oxide for Biomedical Applications.

Biosensors (Basel). 2025-7-7

[3]
Knowledge mapping of micro/nanomotors in cancer treatment: a bibliometric analysis (2006-2025).

Discov Oncol. 2025-7-5

[4]
Nanozymes: Innovative Therapeutics in the Battle Against Neurodegenerative Diseases.

Int J Mol Sci. 2025-4-9

[5]
Hydrogen Peroxide Fuel Cells and Self-Powered Electrochemical Sensors Based on the Principle of a Fuel Cell with Biomimetic and Nanozyme Catalysts.

Biosensors (Basel). 2025-2-19

本文引用的文献

[1]
Peptide nanozymes: An emerging direction for functional enzyme mimics.

Bioact Mater. 2024-9-4

[2]
Structural Regulation of Au-Pt Bimetallic Aerogels for Catalyzing the Glucose Cascade Reaction.

Adv Mater. 2024-10

[3]
Stable peptide-assembled nanozyme mimicking dual antifungal actions.

Nat Commun. 2024-7-5

[4]
Nanozybiotics: Advancing Antimicrobial Strategies Through Biomimetic Mechanisms.

Adv Mater. 2024-8

[5]
Trace Amount of Bi-Doped Core-Shell Pd@Pt Mesoporous Nanospheres with Specifically Enhanced Peroxidase-Like Activity Enable Sensitive and Accurate Detection of Acetylcholinesterase and Organophosphorus Nerve Agents.

Anal Chem. 2024-4-16

[6]
Atomic Engineering of Single-Atom Nanozymes for Biomedical Applications.

Adv Mater. 2024-5

[7]
Synthesis and activation of pH-sensitive metal-organic framework Sr(BDC) for oral drug delivery.

Dalton Trans. 2024-1-16

[8]
Metal Site and Size-Controlled BTC-Based MOF as Cysteine Oxidase Mimic for Self-Cascade Detection of Cysteine and Hg.

J Phys Chem B. 2023-11-9

[9]
A Multifunctional Covalent Organic Framework Nanozyme for Promoting Ferroptotic Radiotherapy against Esophageal Cancer.

ACS Nano. 2023-10-24

[10]
Artificial Peroxisome NiPt@Co-NC with Tetra-enzyme Activities for Colorimetric Glutathione Sensing.

ACS Appl Mater Interfaces. 2023-10-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索