Suppr超能文献

在水中选择性合成赖氨酸肽和具有催化活性的二氨基丙氨酸肽腈的前生物合理合成。

Selective Synthesis of Lysine Peptides and the Prebiotically Plausible Synthesis of Catalytically Active Diaminopropionic Acid Peptide Nitriles in Water.

机构信息

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

出版信息

J Am Chem Soc. 2023 Feb 8;145(5):3121-3130. doi: 10.1021/jacs.2c12497. Epub 2023 Jan 26.

Abstract

Why life encodes specific proteinogenic amino acids remains an unsolved problem, but a non-enzymatic synthesis that recapitulates biology's universal strategy of stepwise -to- terminal peptide growth may hold the key to this selection. Lysine is an important proteinogenic amino acid that, despite its essential structural, catalytic, and functional roles in biochemistry, has widely been assumed to be a late addition to the genetic code. Here, we demonstrate that lysine thioacids undergo coupling with aminonitriles in neutral water to afford peptides in near-quantitative yield, whereas non-proteinogenic lysine homologues, ornithine, and diaminobutyric acid cannot form peptides due to rapid and quantitative cyclization that irreversibly blocks peptide synthesis. We demonstrate for the first time that ornithine lactamization provides an absolute differentiation of lysine and ornithine during (non-enzymatic) -to--terminal peptide ligation. We additionally demonstrate that the shortest lysine homologue, diaminopropionic acid, undergoes effective peptide ligation. This prompted us to discover a high-yielding prebiotically plausible synthesis of the diaminopropionic acid residue, by peptide nitrile modification, through the addition of ammonia to a dehydroalanine nitrile. With this synthesis in hand, we then discovered that the low basicity of diaminopropionyl residues promotes effective, biomimetic, imine catalysis in neutral water. Our results suggest diaminopropionic acid, synthesized by peptide nitrile modification, can replace or augment lysine residues during early evolution but that lysine's electronically isolated sidechain amine likely provides an evolutionary advantage for coupling and coding as a preformed monomer in monomer-by-monomer peptide translation.

摘要

为什么生命会编码特定的蛋白质氨基酸仍然是一个未解决的问题,但非酶合成可以重现生物学逐步到末端肽生长的通用策略,这可能是这种选择的关键。赖氨酸是一种重要的蛋白质氨基酸,尽管它在生物化学中具有重要的结构、催化和功能作用,但广泛认为是遗传密码的晚期添加物。在这里,我们证明赖氨酸硫代酸在中性水中与氨基腈发生偶联,以接近定量的产率得到肽,而非蛋白质赖氨酸类似物鸟氨酸和二氨基丁酸由于快速和定量的环化而不能形成肽,这种环化不可逆地阻止了肽合成。我们首次证明,鸟氨酸内酰胺化在(非酶)到末端肽连接过程中提供了赖氨酸和鸟氨酸的绝对区分。我们还证明了最短的赖氨酸类似物二氨基丙氨酸能够有效地进行肽连接。这促使我们通过肽腈修饰,通过将氨添加到脱水丙氨酸腈中,发现了二氨基丙氨酸残基的高产、具有原生化合理性的合成方法。有了这个合成方法,我们随后发现二氨基丙酰基残基的低碱性促进了中性水中有效的、模拟生物的亚胺催化。我们的结果表明,通过肽腈修饰合成的二氨基丙氨酸可以在早期进化中替代或补充赖氨酸残基,但赖氨酸电子隔离的侧链胺可能提供了在单体-单体肽翻译中作为预形成单体进行偶联和编码的进化优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/9912261/1f521cf6c40c/ja2c12497_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验