Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America.
Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America.
PLoS Biol. 2023 Jan 26;21(1):e3001969. doi: 10.1371/journal.pbio.3001969. eCollection 2023 Jan.
Noonan syndrome (NS) and NS with multiple lentigines (NSML) cognitive dysfunction are linked to SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) gain-of-function (GoF) and loss-of-function (LoF), respectively. In Drosophila disease models, we find both SHP2 mutations from human patients and corkscrew (csw) homolog LoF/GoF elevate glutamatergic transmission. Cell-targeted RNAi and neurotransmitter release analyses reveal a presynaptic requirement. Consistently, all mutants exhibit reduced synaptic depression during high-frequency stimulation. Both LoF and GoF mutants also show impaired synaptic plasticity, including reduced facilitation, augmentation, and post-tetanic potentiation. NS/NSML diseases are characterized by elevated MAPK/ERK signaling, and drugs suppressing this signaling restore normal neurotransmission in mutants. Fragile X syndrome (FXS) is likewise characterized by elevated MAPK/ERK signaling. Fragile X Mental Retardation Protein (FMRP) binds csw mRNA and neuronal Csw protein is elevated in Drosophila fragile X mental retardation 1 (dfmr1) nulls. Moreover, phosphorylated ERK (pERK) is increased in dfmr1 and csw null presynaptic boutons. We find presynaptic pERK activation in response to stimulation is reduced in dfmr1 and csw nulls. Trans-heterozygous csw/+; dfmr1/+ recapitulate elevated presynaptic pERK activation and function, showing FMRP and Csw/SHP2 act within the same signaling pathway. Thus, a FMRP and SHP2 MAPK/ERK regulative mechanism controls basal and activity-dependent neurotransmission strength.
努南综合征(NS)和多发性黑子综合征(NSML)的认知功能障碍分别与含 SH2 结构域的蛋白酪氨酸磷酸酶-2(SHP2)功能获得性(GoF)和功能丧失性(LoF)突变相关。在果蝇疾病模型中,我们发现来自人类患者的 SHP2 突变和螺旋蝇(csw)同源物 LoF/GoF 均会升高谷氨酸能传递。细胞靶向 RNAi 和神经递质释放分析显示存在突触前需求。一致地,所有突变体在高频刺激期间均表现出减少的突触抑制。LoF 和 GoF 突变体也表现出受损的突触可塑性,包括减少易化、增强和后强直增强。NS/NSML 疾病的特征是 MAPK/ERK 信号升高,抑制该信号的药物可恢复突变体的正常神经传递。脆性 X 综合征(FXS)同样以 MAPK/ERK 信号升高为特征。脆性 X 智力低下蛋白 1(FMRP)与 csw mRNA 结合,果蝇脆性 X 智力低下 1 (dfmr1) 缺失体中的神经元 Csw 蛋白升高。此外,磷酸化 ERK(pERK)在 dfmr1 和 csw 缺失的突触前末梢中增加。我们发现 dfmr1 和 csw 缺失的突触前 pERK 激活在刺激反应中减少。csw/+;dfmr1/+的反式杂合子重现了升高的突触前 pERK 激活和功能,表明 FMRP 和 Csw/SHP2 作用于相同的信号通路内。因此,FMRP 和 SHP2 MAPK/ERK 调节机制控制着基础和活动依赖性神经传递强度。