ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
J Chem Theory Comput. 2023 Feb 14;19(3):856-873. doi: 10.1021/acs.jctc.2c01035. Epub 2023 Jan 26.
This work presents a general framework for deriving exact and approximate Newton self-consistent field (SCF) orbital optimization algorithms by leveraging concepts borrowed from differential geometry. Within this framework, we extend the augmented Roothaan-Hall (ARH) algorithm to unrestricted electronic and nuclear-electronic calculations. We demonstrate that ARH yields an excellent compromise between stability and computational cost for SCF problems that are hard to converge with conventional first-order optimization strategies. In the electronic case, we show that ARH overcomes the slow convergence of orbitals in strongly correlated molecules with the example of several iron-sulfur clusters. For nuclear-electronic calculations, ARH significantly enhances the convergence already for small molecules, as demonstrated for a series of protonated water clusters.
这项工作提出了一个通用框架,通过利用微分几何的概念,推导出精确和近似的牛顿自洽场 (SCF) 轨道优化算法。在这个框架内,我们将增强的 Roothaan-Hall (ARH) 算法扩展到非限制的电子和核电子计算中。我们证明 ARH 在与传统的一阶优化策略难以收敛的 SCF 问题上,在稳定性和计算成本之间取得了很好的平衡。在电子的情况下,我们用几个铁硫簇的例子证明了 ARH 克服了强关联分子中轨道收敛缓慢的问题。对于核电子计算,ARH 已经显著提高了小分子的收敛速度,我们用一系列质子化水簇进行了演示。