Department of Chemistry, Michigan Technological University, Houghton, MI-49931, USA.
Department of Chemical Engineering, Michigan Technological University, Houghton, MI-49931, USA.
Chemistry. 2023 Apr 25;29(24):e202300138. doi: 10.1002/chem.202300138. Epub 2023 Feb 13.
This study investigates dioxygen binding and 2-oxoglutarate (2OG) coordination by two model non-heme Fe /2OG enzymes: a class 7 histone demethylase (PHF8) that catalyzes the hydroxylation of its H3K9me2 histone substrate leading to demethylation reactivity and the ethylene-forming enzyme (EFE), which catalyzes two competing reactions of ethylene generation and substrate l-Arg hydroxylation. Although both enzymes initially bind 2OG by using an off-line 2OG coordination mode, in PHF8, the substrate oxidation requires a transition to an in-line mode, whereas EFE is catalytically productive for ethylene production from 2OG in the off-line mode. We used classical molecular dynamics (MD), quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM metadynamics (QM/MM-MetD) simulations to reveal that it is the dioxygen binding process and, ultimately, the protein environment that control the formation of the in-line Fe -OO⋅ intermediate in PHF8 and the off-line Fe -OO⋅ intermediate in EFE.
本研究通过两种模型非血红素 Fe/2OG 酶研究了氧气结合和 2-氧代戊二酸(2OG)的配位:一种是类 7 组蛋白去甲基酶(PHF8),它催化其 H3K9me2 组蛋白底物的羟化,导致去甲基化反应性,另一种是乙烯形成酶(EFE),它催化乙烯生成和底物 l-Arg 羟化两个竞争反应。尽管这两种酶最初都通过使用离线 2OG 配位模式结合 2OG,但在 PHF8 中,底物氧化需要过渡到在线模式,而 EFE 在离线模式下从 2OG 生成乙烯是催化活性的。我们使用经典分子动力学(MD)、量子力学/分子力学(QM/MM)MD 和 QM/MM 元动力学(QM/MM-MetD)模拟揭示,是氧气结合过程,最终是蛋白质环境控制了在线 Fe-OO⋅中间物在 PHF8 中的形成和离线 Fe-OO⋅中间物在 EFE 中的形成。