Suppr超能文献

反向触发神经网络和基于规则的急性呼吸窘迫综合征自动检测。

Reverse triggering neural network and rules-based automated detection in acute respiratory distress syndrome.

机构信息

Division of Pulmonary and Critical Care Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain, Beth Israel Deaconess Medical Center, Boston, MA, USA.

Division of Pulmonary and Critical Care Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.

出版信息

J Crit Care. 2023 Jun;75:154256. doi: 10.1016/j.jcrc.2023.154256. Epub 2023 Jan 24.

Abstract

PURPOSE

Dyssynchrony may cause lung injury and is associated with worse outcomes in mechanically ventilated patients. Reverse triggering (RT) is a common type of dyssynchrony presenting with several phenotypes which may directly cause lung injury and be difficult to identify. Due to these challenges, automated software to assist in identification is needed.

MATERIALS AND METHODS

This was a prospective observational study using a training set of 15 patients and a validation dataset of 13 patients. RT events were manually identified and compared with "rules-based" programs (with and without esophageal manometry and reverse triggering with breath stacking), and were used to train a neural network artificial intelligence (AI) program. RT phenotypes were identified using previously defined rules. Performance of the programs was compared via sensitivity, specificity, positive predictive value (PPV) and F1 score.

RESULTS

33,244 breaths were manually analyzed, with 8718 manually identified as reverse-triggers. The rules-based and AI programs yielded excellent specificity (>95% in all programs) and F1 score (>75% in all programs). RT with breath stacking (24.4%) and mid-cycle RT (37.8%) were the most common phenotypes.

CONCLUSIONS

Automated detection of RT demonstrated good performance, with the potential application of these programs for research and clinical care.

摘要

目的

失同步可导致肺损伤,并与机械通气患者的预后不良相关。反向触发(RT)是一种常见的失步类型,具有多种表型,可能直接导致肺损伤,且难以识别。由于这些挑战,需要自动化软件来协助识别。

材料和方法

这是一项前瞻性观察研究,使用了 15 名患者的训练集和 13 名患者的验证数据集。手动识别 RT 事件,并与“基于规则”的程序(有无食管测压和呼吸堆叠的反向触发)进行比较,并用于训练神经网络人工智能(AI)程序。使用先前定义的规则识别 RT 表型。通过灵敏度、特异性、阳性预测值(PPV)和 F1 评分比较程序的性能。

结果

手动分析了 33244 次呼吸,其中 8718 次手动识别为反向触发。基于规则的程序和 AI 程序的特异性均>95%(所有程序),F1 评分均>75%(所有程序)。具有呼吸堆叠的 RT(24.4%)和中期 RT(37.8%)是最常见的表型。

结论

RT 的自动检测表现出良好的性能,这些程序可能有用于研究和临床护理的应用。

相似文献

3
Asynchrony Injures Lung and Diaphragm in Acute Respiratory Distress Syndrome.急性呼吸窘迫综合征中异步损伤肺和膈肌。
Crit Care Med. 2023 Nov 1;51(11):e234-e242. doi: 10.1097/CCM.0000000000005988. Epub 2023 Jul 17.
5
Reverse Trigger Phenotypes in Acute Respiratory Distress Syndrome.急性呼吸窘迫综合征中的反向触发现象。
Am J Respir Crit Care Med. 2021 Jan 1;203(1):67-77. doi: 10.1164/rccm.201907-1427OC.

本文引用的文献

5
Reverse Trigger Phenotypes in Acute Respiratory Distress Syndrome.急性呼吸窘迫综合征中的反向触发现象。
Am J Respir Crit Care Med. 2021 Jan 1;203(1):67-77. doi: 10.1164/rccm.201907-1427OC.
7
Covid-19 in Critically Ill Patients in the Seattle Region - Case Series.西雅图地区危重症新冠患者-病例系列。
N Engl J Med. 2020 May 21;382(21):2012-2022. doi: 10.1056/NEJMoa2004500. Epub 2020 Mar 30.
9
Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome.急性呼吸窘迫综合征的早期神经肌肉阻滞。
N Engl J Med. 2019 May 23;380(21):1997-2008. doi: 10.1056/NEJMoa1901686. Epub 2019 May 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验