Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA; Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
EBioMedicine. 2023 Feb;88:104443. doi: 10.1016/j.ebiom.2023.104443. Epub 2023 Jan 24.
BACKGROUND: A reliable risk prediction model is critically important for identifying individuals with high risk of developing lung cancer as candidates for low-dose chest computed tomography (LDCT) screening. Leveraging a cutting-edge machine learning technique that accommodates a wide list of questionnaire-based predictors, we sought to optimize and validate a lung cancer prediction model. METHODS: We developed an Optimized early Warning model for Lung cancer risk (OWL) using the XGBoost algorithm with 323,344 participants from the England area in UK Biobank (training set), and independently validated it with 93,227 participants from UKB Scotland and Wales area (validation set 1), as well as 70,605 and 66,231 participants in the Prostate, Lung, Colorectal, and Ovarian cancer screening trial (PLCO) control and intervention subpopulations, respectively (validation sets 2 & 3) and 23,138 and 18,669 participants in the United States National Lung Screening Trial (NLST) control and intervention subpopulations, respectively (validation sets 4 & 5). By comparing with three competitive prediction models, i.e., PLCO modified 2012 (PLCO), PLCO modified 2014 (PLCO), and the Liverpool Lung cancer Project risk model version 3 (LLPv3), we assessed the discrimination of OWL by the area under receiver operating characteristic curve (AUC) at the designed time point. We further evaluated the calibration using relative improvement in the ratio of expected to observed lung cancer cases (RI), and illustrated the clinical utility by the decision curve analysis. FINDINGS: For general population, with validation set 1, OWL (AUC = 0.855, 95% CI: 0.829-0.880) presented a better discriminative capability than PLCO (AUC = 0.821, 95% CI: 0.794-0.848) (p < 0.001); with validation sets 2 & 3, AUC of OWL was comparable to PLCO (AUC-AUC < 1%). For ever-smokers, OWL outperformed PLCO and PLCO among ever-smokers in validation set 1 (AUC = 0.842, 95% CI: 0.814-0.871; AUC = 0.792, 95% CI: 0.760-0.823; AUC = 0.791, 95% CI: 0.760-0.822, all p < 0.001). OWL remained comparable to PLCO and PLCO in discrimination (AUC difference from -0.014 to 0.008) among the ever-smokers in validation sets 2 to 5. In all the validation sets, OWL outperformed LLPv3 among the general population and the ever-smokers. Of note, OWL showed significantly better calibration than PLCO, PLCO (RI from 43.1% to 92.3%, all p < 0.001), and LLPv3 (RI from 41.4% to 98.7%, all p < 0.001) in most cases. For clinical utility, OWL exhibited significant improvement in average net benefits (NB) over PLCO in validation set 1 (NB improvement: 32, p < 0.001); among ever smokers of validation set 1, OWL (average NB = 289) retained significant improvement over PLCO (average NB = 213) (p < 0.001). OWL had equivalent NBs with PLCO and PLCO in PLCO and NLST populations, while outperforming LLPv3 in the three populations. INTERPRETATION: OWL, with a high degree of predictive accuracy and robustness, is a general framework with scientific justifications and clinical utility that can aid in screening individuals with high risks of lung cancer. FUNDING: National Natural Science Foundation of China, the US NIH.
背景:对于识别出患有肺癌风险较高的个体,并将其作为低剂量胸部计算机断层扫描(LDCT)筛查的候选者,一个可靠的风险预测模型至关重要。通过利用一种先进的机器学习技术,该技术可以容纳基于问卷的广泛预测因子列表,我们旨在优化和验证肺癌预测模型。
方法:我们使用 XGBoost 算法在 UK Biobank 的英格兰地区(训练集)的 323344 名参与者中开发了一种名为 Optimized early Warning model for Lung cancer risk(OWL)的模型,并在 UKB 苏格兰和威尔士地区(验证集 1)的 93227 名参与者、前列腺癌、肺癌、结直肠癌和卵巢癌筛查试验(PLCO)对照组和干预组(验证集 2 和 3)中的 70605 名和 66231 名参与者以及美国国家肺癌筛查试验(NLST)对照组和干预组(验证集 4 和 5)中的 23138 名和 18669 名参与者中进行了独立验证。通过与三个有竞争力的预测模型,即 PLCO modified 2012(PLCO)、PLCO modified 2014(PLCO)和 Liverpool Lung cancer Project risk model version 3(LLPv3)进行比较,我们评估了 OWL 在预定时间点的接收者操作特征曲线(ROC)下面积(AUC)的区分能力。我们还使用预期与观察到的肺癌病例的比值的相对改善(RI)来评估校准情况,并通过决策曲线分析说明了临床实用性。
结果:对于一般人群,在验证集 1 中,OWL(AUC=0.855,95%CI:0.829-0.880)在区分能力方面优于 PLCO(AUC=0.821,95%CI:0.794-0.848)(p<0.001);在验证集 2 和 3 中,OWL 的 AUC 与 PLCO 相当(AUC-AUC<1%)。对于一直吸烟者,OWL 在验证集 1 中优于 PLCO 和 PLCO(ever-smokers)(AUC=0.842,95%CI:0.814-0.871;AUC=0.792,95%CI:0.760-0.823;AUC=0.791,95%CI:0.760-0.822,均 p<0.001)。在验证集 2 到 5 中,OWL 在区分能力方面与 PLCO 和 PLCO 相当(AUC 差值在 0.014 到 0.008 之间)。在所有验证集中,OWL 在一般人群和一直吸烟者中的表现均优于 LLPv3。值得注意的是,OWL 在大多数情况下都显示出比 PLCO 和 PLCO 更好的校准(RI 从 43.1%到 92.3%,均 p<0.001)和 LLPv3(RI 从 41.4%到 98.7%,均 p<0.001)。在临床实用性方面,OWL 在验证集 1 中表现出比 PLCO 显著更高的平均净收益(NB)(NB 提高:32,p<0.001);在验证集 1 中的一直吸烟者中,OWL(平均 NB=289)与 PLCO(平均 NB=213)相比保持了显著的提高(p<0.001)。OWL 在 PLCO 和 NLST 人群中与 PLCO 和 PLCO 具有相当的 NB,而在这三个人群中均优于 LLPv3。
解释:OWL 具有高度的预测准确性和稳健性,是一种具有科学依据和临床实用性的通用框架,可以帮助筛选出患有肺癌风险较高的个体。
资金:国家自然科学基金、美国 NIH。
Acta Oncol. 2025-5-12