Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France.
Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK; Manchester Thoracic Oncology Centre, Manchester University NHS Foundation Trust, Manchester, UK.
Lancet Digit Health. 2024 Sep;6(9):e614-e624. doi: 10.1016/S2589-7500(24)00123-7.
Lung cancer risk prediction models might efficiently identify individuals who should be offered lung cancer screening. However, their performance has not been comprehensively evaluated in Europe. We aimed to externally validate and evaluate the performance of several risk prediction models that predict lung cancer incidence or mortality in prospective European cohorts.
We analysed 240 137 participants aged 45-80 years with a current or former smoking history from nine European countries in four prospective cohorts from the pooled database of the Lung Cancer Cohort Consortium: the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (Finland), the Nord-Trøndelag Health Study (Norway), CONSTANCES (France), and the European Prospective Investigation into Cancer and Nutrition (Denmark, Germany, Italy, Spain, Sweden, the Netherlands, and Norway). We evaluated ten lung cancer risk models, which comprised the Bach, the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial 2012 model (PLCO), the Lung Cancer Risk Assessment Tool (LCRAT), the Lung Cancer Death Risk Assessment Tool (LCDRAT), the Nord-Trøndelag Health Study (HUNT), the Optimized Early Warning Model for Lung Cancer Risk (OWL), the University College London-Death (UCLD), the University College London-Incidence (UCLI), the Liverpool Lung Project version 2 (LLP version 2), and the Liverpool Lung Project version 3 (LLP version 3) models. We quantified model calibration as the ratio of expected to observed cases or deaths and discrimination using the area under the receiver operating characteristic curve (AUC). For each model, we also identified risk thresholds that would screen the same number of individuals as each of the US Preventive Services Task Force 2021 (USPSTF-2021), the US Preventive Services Task Force 2013 (USPSTF-2013), and the Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON) criteria.
Among the participants, 1734 lung cancer cases and 1072 lung cancer deaths occurred within five years of enrolment. Most models had reasonable calibration in most countries, although the LLP version 2 overpredicted risk by more than 50% in eight countries (expected to observed ≥1·50). The PLCO, LCDRAT, LCRAT, Bach, HUNT, OWL, UCLD, and UCLI models showed similar discrimination in most countries, with AUCs ranging from 0·68 (95% CI 0·59-0·77) to 0·83 (0·78-0·89), whereas the LLP version 2 and LLP version 3 showed lower discrimination, with AUCs ranging from 0·64 (95% CI 0·57-0·72) to 0·78 (0·74-0·83). When pooling data from all countries (but excluding the HUNT cohort), 33·9% (73 313 of 216 387) of individuals were eligible by USPSTF-2021 criteria, which included 74·8% (1185) of lung cancers and 76·3% (730) of lung cancer deaths occurring over 5 years. Fewer individuals were selected by USPSTF-2013 and NELSON criteria. After applying thresholds to select a population of equal size to USPSTF-2021, the PLCO, LCDRAT, LCRAT, Bach, HUNT, OWL, UCLD, and UCLI, models identified 77·6%-79·1% of future cases, although they selected slightly older individuals compared with USPSTF-2021 criteria. Results were similar for USPSTF-2013 and NELSON.
Several lung cancer risk prediction models showed good performance in European countries and might improve the efficiency of lung cancer screening if used in place of categorical eligibility criteria.
US National Cancer Institute, l'Institut National du Cancer, Cancer Research UK.
肺癌风险预测模型可以有效地识别出应该接受肺癌筛查的个体。然而,它们在欧洲的性能尚未得到全面评估。我们旨在对来自欧洲九个国家的 240137 名有吸烟史或当前吸烟史的 45-80 岁个体进行外部验证,并评估几种预测肺癌发病率或死亡率的风险预测模型在四个前瞻性欧洲队列中的表现。
我们分析了来自肺癌队列联盟的 pooled 数据库中的九个欧洲国家的四个前瞻性队列中的 240137 名参与者,这些参与者有当前或过去的吸烟史,年龄在 45-80 岁之间:阿尔法-生育酚、β-胡萝卜素癌症预防研究(芬兰)、北特伦德拉格健康研究(挪威)、CONSTANCES(法国)和欧洲癌症与营养前瞻性调查(丹麦、德国、意大利、西班牙、瑞典、荷兰和挪威)。我们评估了十种肺癌风险模型,包括 Bach、Prostate、Lung、Colorectal 和 Ovarian Cancer Screening Trial 2012 模型(PLCO)、Lung Cancer Risk Assessment Tool(LCRAT)、Lung Cancer Death Risk Assessment Tool(LCDRAT)、北特伦德拉格健康研究(HUNT)、Optimized Early Warning Model for Lung Cancer Risk(OWL)、University College London-Death(UCLD)、University College London-Incidence(UCLI)、Liverpool Lung Project version 2(LLP version 2)和 Liverpool Lung Project version 3(LLP version 3)模型。我们通过使用接收者操作特征曲线下的面积(AUC)来量化模型校准,即预期病例数或死亡数与观察到的病例数或死亡数的比值。对于每个模型,我们还确定了风险阈值,该阈值将筛查出与美国预防服务工作组 2021 年(USPSTF-2021)、美国预防服务工作组 2013 年(USPSTF-2013)和荷兰-勒芬肺癌筛查研究(NELSON)标准相同数量的个体。
在参与者中,5 年内发生了 1734 例肺癌病例和 1072 例肺癌死亡。大多数模型在大多数国家都有合理的校准,尽管 LLP version 2 在八个国家(预期观察值≥1.50)中过高地预测了风险。PLCO、LCDRAT、LCRAT、Bach、HUNT、OWL、UCLD 和 UCLI 模型在大多数国家的区分度相似,AUC 范围为 0.68(95%CI 0.59-0.77)至 0.83(0.78-0.89),而 LLP version 2 和 LLP version 3 的区分度较低,AUC 范围为 0.64(95%CI 0.57-0.72)至 0.78(0.74-0.83)。当从所有国家(但不包括 HUNT 队列)汇总数据时,USPSTF-2021 标准包括 73313 名(216387 名中的 33.9%)个体有资格进行筛查,其中包括 74.8%(1185 例)的肺癌和 76.3%(730 例)的肺癌死亡发生在 5 年内。USPSTF-2013 和 NELSON 标准选择的个体较少。应用阈值选择与 USPSTF-2021 标准相等大小的人群后,PLCO、LCDRAT、LCRAT、Bach、HUNT、OWL、UCLD 和 UCLI 模型识别出了未来病例的 77.6%-79.1%,尽管与 USPSTF-2021 标准相比,它们选择的个体年龄稍大。USPSTF-2013 和 NELSON 的结果相似。
在欧洲国家,几种肺癌风险预测模型表现良好,如果用于替代分类资格标准,可能会提高肺癌筛查的效率。
美国国家癌症研究所、法国国家癌症研究所、英国癌症研究中心。