Suppr超能文献

确定高危人群进行有针对性的肺癌筛查:PLCO 风险预测工具的独立验证。

Identifying high risk individuals for targeted lung cancer screening: Independent validation of the PLCO risk prediction tool.

机构信息

Cancer Research Division, Cancer Council NSW, New South Wales, Australia.

School of Public Health, Sydney Medical School, University of Sydney, New South Wales, Australia.

出版信息

Int J Cancer. 2017 Jul 15;141(2):242-253. doi: 10.1002/ijc.30673. Epub 2017 Apr 21.

Abstract

Lung cancer screening with computerised tomography holds promise, but optimising the balance of benefits and harms via selection of a high risk population is critical. PLCO is a logistic regression model based on U.S. data, incorporating sociodemographic and health factors, which predicts 6-year lung cancer risk among ever-smokers, and thus may better predict those who might benefit from screening than criteria based solely on age and smoking history. We aimed to validate the performance of PLCO in predicting lung cancer outcomes in a cohort of Australian smokers. Predicted risk of lung cancer was calculated using PLCO applied to baseline data from 95,882 ever-smokers aged ≥45 years in the 45 and Up Study (2006-2009). Predictions were compared to lung cancer outcomes captured to June 2014 via linkage to population-wide health databases; a total of 1,035 subsequent lung cancer diagnoses were identified. PLCO had good discrimination (area under the receiver-operating-characteristic-curve; AUC 0.80, 95%CI 0.78-0.81) and excellent calibration (mean and 90th percentiles of absolute risk difference between observed and predicted outcomes: 0.006 and 0.016, respectively). Sensitivity (69.4%, 95%CI, 65.6-73.0%) of the PLCO criteria in the 55-74 year age group for predicting lung cancers was greater than that using criteria based on ≥30 pack-years smoking and ≤15 years quit (57.3%, 53.3-61.3%; p < 0.0001), but specificity was lower (72.0%, 71.7-72.4% versus 75.2%, 74.8-75.6%, respectively; p < 0.0001). Targeting high risk people for lung cancer screening using PLCO might improve the balance of benefits versus harms, and cost-effectiveness of lung cancer screening.

摘要

计算机断层扫描肺癌筛查具有广阔的前景,但通过选择高危人群来优化其获益与风险的平衡至关重要。PLCO 是一个基于美国数据的逻辑回归模型,纳入了社会人口学和健康因素,可预测曾吸烟者 6 年内的肺癌风险,因此可能比仅基于年龄和吸烟史的标准更好地预测那些可能从筛查中获益的人群。我们旨在验证 PLCO 在预测澳大利亚吸烟者肺癌结局方面的性能。使用 PLCO 根据 45 岁及以上研究(2006-2009 年)中 95882 名≥45 岁的曾吸烟者的基线数据计算肺癌风险预测值。将预测结果与截至 2014 年 6 月通过与全人群健康数据库的链接获取的肺癌结局进行比较;共发现 1035 例后续肺癌诊断。PLCO 具有良好的区分度(受试者工作特征曲线下面积;AUC 0.80,95%CI 0.78-0.81)和极好的校准度(观察到的与预测到的结局之间绝对风险差异的平均值和第 90 百分位数:分别为 0.006 和 0.016)。在 55-74 岁年龄组中,PLCO 标准预测肺癌的敏感性(69.4%,95%CI,65.6-73.0%)高于基于≥30 包年吸烟和≤15 年戒烟的标准(57.3%,53.3-61.3%;p<0.0001),但特异性较低(72.0%,71.7-72.4%与 75.2%,74.8-75.6%;p<0.0001)。使用 PLCO 为肺癌筛查确定高危人群可能会改善获益与风险的平衡,以及肺癌筛查的成本效益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验