Ferrer Ortas Júlia, Mahou Pierre, Escot Sophie, Stringari Chiara, David Nicolas B, Bally-Cuif Laure, Dray Nicolas, Négrerie Michel, Supatto Willy, Beaurepaire Emmanuel
Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France.
Zebrafish Neurogenetics Unit, team supported by Ligue Nationale contre le Cancer, Institut Pasteur, CNRS, 75015, Paris, France.
Light Sci Appl. 2023 Jan 26;12(1):29. doi: 10.1038/s41377-022-01064-4.
Mapping red blood cells (RBCs) flow and oxygenation is of key importance for analyzing brain and tissue physiology. Current microscopy methods are limited either in sensitivity or in spatio-temporal resolution. In this work, we introduce a novel approach based on label-free third-order sum-frequency generation (TSFG) and third-harmonic generation (THG) contrasts. First, we propose a novel experimental scheme for color TSFG microscopy, which provides simultaneous measurements at several wavelengths encompassing the Soret absorption band of hemoglobin. We show that there is a strong three-photon (3P) resonance related to the Soret band of hemoglobin in THG and TSFG signals from zebrafish and human RBCs, and that this resonance is sensitive to RBC oxygenation state. We demonstrate that our color TSFG implementation enables specific detection of flowing RBCs in zebrafish embryos and is sensitive to RBC oxygenation dynamics with single-cell resolution and microsecond pixel times. Moreover, it can be implemented on a 3P microscope and provides label-free RBC-specific contrast at depths exceeding 600 µm in live adult zebrafish brain. Our results establish a new multiphoton contrast extending the palette of deep-tissue microscopy.
绘制红细胞(RBCs)的流动和氧合情况对于分析大脑和组织生理学至关重要。当前的显微镜方法在灵敏度或时空分辨率方面存在局限性。在这项工作中,我们引入了一种基于无标记三阶和频产生(TSFG)和三次谐波产生(THG)对比度的新方法。首先,我们提出了一种用于彩色TSFG显微镜的新颖实验方案,该方案能够在涵盖血红蛋白索雷特吸收带的多个波长下同时进行测量。我们表明,在斑马鱼和人类红细胞的THG和TSFG信号中,存在与血红蛋白索雷特带相关的强烈三光子(3P)共振,并且这种共振对红细胞的氧合状态敏感。我们证明,我们的彩色TSFG实现方式能够在斑马鱼胚胎中特异性检测流动的红细胞,并且以单细胞分辨率和微秒级像素时间对红细胞氧合动力学敏感。此外,它可以在三光子显微镜上实现,并在成年斑马鱼活体大脑中超过600μm的深度提供无标记的红细胞特异性对比度。我们的结果建立了一种新的多光子对比度,扩展了深层组织显微镜的调色板。