Suppr超能文献

大规模平行基因敲入人 T 细胞工程。

Massively parallel knock-in engineering of human T cells.

机构信息

Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.

System Biology Institute, Yale University, West Haven, CT, USA.

出版信息

Nat Biotechnol. 2023 Sep;41(9):1239-1255. doi: 10.1038/s41587-022-01639-x. Epub 2023 Jan 26.

Abstract

The efficiency of targeted knock-in for cell therapeutic applications is generally low, and the scale is limited. In this study, we developed CLASH, a system that enables high-efficiency, high-throughput knock-in engineering. In CLASH, Cas12a/Cpf1 mRNA combined with pooled adeno-associated viruses mediate simultaneous gene editing and precise transgene knock-in using massively parallel homology-directed repair, thereby producing a pool of stably integrated mutant variants each with targeted gene editing. We applied this technology in primary human T cells and performed time-coursed CLASH experiments in blood cancer and solid tumor models using CD3, CD8 and CD4 T cells, enabling pooled generation and unbiased selection of favorable CAR-T variants. Emerging from CLASH experiments, a unique CRISPR RNA (crRNA) generates an exon3 skip mutant of PRDM1 in CAR-Ts, which leads to increased proliferation, stem-like properties, central memory and longevity in these cells, resulting in higher efficacy in vivo across multiple cancer models, including a solid tumor model. The versatility of CLASH makes it broadly applicable to diverse cellular and therapeutic engineering applications.

摘要

靶向基因敲入在细胞治疗应用中的效率通常较低,规模也有限。在这项研究中,我们开发了 CLASH 系统,该系统可实现高效、高通量的基因敲入工程。在 CLASH 中,Cas12a/Cpf1 mRNA 与汇集的腺相关病毒一起介导同时进行基因编辑和精确的转基因敲入,从而使用大规模平行同源定向修复产生稳定整合的突变体池,每个突变体都具有靶向基因编辑。我们将这项技术应用于原代人 T 细胞,并在血液癌症和实体瘤模型中使用 CD3、CD8 和 CD4 T 细胞进行了时间进程 CLASH 实验,从而能够汇集生成和无偏选择有利的 CAR-T 变体。从 CLASH 实验中涌现出一种独特的 CRISPR RNA (crRNA),它在 CAR-T 中产生 PRDM1 的外显子 3 跳跃突变,导致这些细胞中增殖、干细胞样特性、中央记忆和寿命增加,从而在包括实体瘤模型在内的多种癌症模型中提高了体内疗效。CLASH 的多功能性使其广泛适用于各种细胞和治疗工程应用。

相似文献

1
Massively parallel knock-in engineering of human T cells.
Nat Biotechnol. 2023 Sep;41(9):1239-1255. doi: 10.1038/s41587-022-01639-x. Epub 2023 Jan 26.
2
High-efficiency of genetic modification using CRISPR/Cpf1 system for engineered CAR-T cell therapy.
Methods Cell Biol. 2022;167:1-14. doi: 10.1016/bs.mcb.2021.08.001. Epub 2021 Sep 15.
4
Genome Editing in CAR-T Cells Using CRISPR/Cas9 Technology.
Methods Mol Biol. 2024;2748:151-165. doi: 10.1007/978-1-0716-3593-3_12.
5
Improving the efficiency of CRISPR-Cas12a-based genome editing with site-specific covalent Cas12a-crRNA conjugates.
Mol Cell. 2021 Nov 18;81(22):4747-4756.e7. doi: 10.1016/j.molcel.2021.09.021. Epub 2021 Oct 13.
6
Multiplexed conditional genome editing with Cas12a in .
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22890-22899. doi: 10.1073/pnas.2004655117. Epub 2020 Aug 25.
7
Harnessing noncanonical crRNA for highly efficient genome editing.
Nat Commun. 2024 May 7;15(1):3823. doi: 10.1038/s41467-024-48012-x.
8
Gene Manipulation Using Fusion Guide RNAs for Cas9 and Cas12a.
Methods Mol Biol. 2021;2162:185-193. doi: 10.1007/978-1-0716-0687-2_10.
9
Genome editing with the donor plasmid equipped with synthetic crRNA-target sequence.
Sci Rep. 2020 Aug 24;10(1):14120. doi: 10.1038/s41598-020-70804-6.
10
Extension of the crRNA enhances Cpf1 gene editing in vitro and in vivo.
Nat Commun. 2018 Aug 17;9(1):3313. doi: 10.1038/s41467-018-05641-3.

引用本文的文献

1
Efficient and multiplexed somatic genome editing with Cas12a mice.
Nat Biomed Eng. 2025 May 30. doi: 10.1038/s41551-025-01407-7.
2
Unraveling the future of genomics: CRISPR, single-cell omics, and the applications in cancer and immunology.
Front Genome Ed. 2025 Apr 11;7:1565387. doi: 10.3389/fgeed.2025.1565387. eCollection 2025.
4
Engineering resilient CAR T cells for immunosuppressive environment.
Mol Ther. 2025 Jun 4;33(6):2391-2405. doi: 10.1016/j.ymthe.2025.01.035. Epub 2025 Jan 25.
5
Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies.
Oncogene. 2025 Mar;44(7):409-426. doi: 10.1038/s41388-025-03273-8. Epub 2025 Jan 25.
6
Genetic disruption of Blimp-1 drastically augments the antitumor efficacy of BCMA-targeting CAR T cells.
Blood Adv. 2025 Feb 11;9(3):627-641. doi: 10.1182/bloodadvances.2024013209.
8
High-throughput screening for optimizing adoptive T cell therapies.
Exp Hematol Oncol. 2024 Nov 13;13(1):113. doi: 10.1186/s40164-024-00580-w.
9
Leveraging CRISPR gene editing technology to optimize the efficacy, safety and accessibility of CAR T-cell therapy.
Leukemia. 2024 Dec;38(12):2517-2543. doi: 10.1038/s41375-024-02444-y. Epub 2024 Oct 25.

本文引用的文献

1
R&D budgets boom, but success rates falter.
Nat Rev Drug Discov. 2022 Apr;21(4):249. doi: 10.1038/d41573-022-00051-z.
2
FDA approves second BCMA-targeted CAR-T cell therapy.
Nat Rev Drug Discov. 2022 Apr;21(4):249. doi: 10.1038/d41573-022-00048-8.
3
An NK-like CAR T cell transition in CAR T cell dysfunction.
Cell. 2021 Dec 9;184(25):6081-6100.e26. doi: 10.1016/j.cell.2021.11.016. Epub 2021 Dec 2.
5
CRISPR screens unveil signal hubs for nutrient licensing of T cell immunity.
Nature. 2021 Dec;600(7888):308-313. doi: 10.1038/s41586-021-04109-7. Epub 2021 Nov 18.
6
A modified CUT&RUN protocol and analysis pipeline to identify transcription factor binding sites in human cell lines.
STAR Protoc. 2021 Aug 17;2(3):100750. doi: 10.1016/j.xpro.2021.100750. eCollection 2021 Sep 17.
7
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
8
Hypoxia-sensing CAR T cells provide safety and efficacy in treating solid tumors.
Cell Rep Med. 2021 Apr 9;2(4):100227. doi: 10.1016/j.xcrm.2021.100227. eCollection 2021 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验