文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

将不同的 CRISPR 核酸酶用于同时进行基因敲入和碱基编辑可防止多重编辑的 CAR T 细胞发生易位。

Combining different CRISPR nucleases for simultaneous knock-in and base editing prevents translocations in multiplex-edited CAR T cells.

机构信息

Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.

BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.

出版信息

Genome Biol. 2023 Apr 24;24(1):89. doi: 10.1186/s13059-023-02928-7.


DOI:10.1186/s13059-023-02928-7
PMID:37095570
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10123993/
Abstract

BACKGROUND: Multiple genetic modifications may be required to develop potent off-the-shelf chimeric antigen receptor (CAR) T cell therapies. Conventional CRISPR-Cas nucleases install sequence-specific DNA double-strand breaks (DSBs), enabling gene knock-out or targeted transgene knock-in. However, simultaneous DSBs provoke a high rate of genomic rearrangements which may impede the safety of the edited cells. RESULTS: Here, we combine a non-viral CRISPR-Cas9 nuclease-assisted knock-in and Cas9-derived base editing technology for DSB free knock-outs within a single intervention. We demonstrate efficient insertion of a CAR into the T cell receptor alpha constant (TRAC) gene, along with two knock-outs that silence major histocompatibility complexes (MHC) class I and II expression. This approach reduces translocations to 1.4% of edited cells. Small insertions and deletions at the base editing target sites indicate guide RNA exchange between the editors. This is overcome by using CRISPR enzymes of distinct evolutionary origins. Combining Cas12a Ultra for CAR knock-in and a Cas9-derived base editor enables the efficient generation of triple-edited CAR T cells with a translocation frequency comparable to unedited T cells. Resulting TCR- and MHC-negative CAR T cells resist allogeneic T cell targeting in vitro. CONCLUSIONS: We outline a solution for non-viral CAR gene transfer and efficient gene silencing using different CRISPR enzymes for knock-in and base editing to prevent translocations. This single-step procedure may enable safer multiplex-edited cell products and demonstrates a path towards off-the-shelf CAR therapeutics.

摘要

背景:开发有效的现成嵌合抗原受体(CAR)T 细胞疗法可能需要进行多次基因修饰。传统的 CRISPR-Cas 核酸酶会在 DNA 双链上造成序列特异性断裂(DSB),从而实现基因敲除或靶向转基因敲入。然而,同时产生的 DSB 会导致基因组重排的高发生率,这可能会影响编辑细胞的安全性。

结果:在这里,我们将非病毒 CRISPR-Cas9 核酸酶辅助的敲入和 Cas9 衍生的碱基编辑技术结合起来,在单次干预中实现 DSB 自由的敲除。我们证明了高效地将 CAR 插入 T 细胞受体α恒定(TRAC)基因中,同时实现了两个敲除,从而沉默了主要组织相容性复合体(MHC)I 类和 II 类的表达。这种方法将易位减少到编辑细胞的 1.4%。碱基编辑靶位点的小插入和缺失表明了编辑之间的向导 RNA 交换。通过使用具有不同进化起源的 CRISPR 酶可以克服这种情况。将 Cas12a Ultra 用于 CAR 敲入和 Cas9 衍生的碱基编辑器结合使用,可以高效地生成三重编辑的 CAR T 细胞,其易位频率与未经编辑的 T 细胞相当。由此产生的 TCR-和 MHC-阴性 CAR T 细胞在体外抵抗同种异体 T 细胞的靶向。

结论:我们概述了一种使用不同的 CRISPR 酶进行非病毒 CAR 基因转移和高效基因沉默的解决方案,以防止易位。这种单步程序可能使更安全的多重编辑细胞产品成为可能,并为现成的 CAR 治疗方法开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640a/10123993/fb143bd3f449/13059_2023_2928_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640a/10123993/c3cf6fd0292f/13059_2023_2928_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640a/10123993/b0c9d753c281/13059_2023_2928_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640a/10123993/d9150b895f9e/13059_2023_2928_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640a/10123993/f2031bcb7862/13059_2023_2928_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640a/10123993/1809ab5a7bc9/13059_2023_2928_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640a/10123993/fb143bd3f449/13059_2023_2928_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640a/10123993/c3cf6fd0292f/13059_2023_2928_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640a/10123993/b0c9d753c281/13059_2023_2928_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640a/10123993/d9150b895f9e/13059_2023_2928_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640a/10123993/f2031bcb7862/13059_2023_2928_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640a/10123993/1809ab5a7bc9/13059_2023_2928_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640a/10123993/fb143bd3f449/13059_2023_2928_Fig6_HTML.jpg

相似文献

[1]
Combining different CRISPR nucleases for simultaneous knock-in and base editing prevents translocations in multiplex-edited CAR T cells.

Genome Biol. 2023-4-24

[2]
Quadruple adenine base-edited allogeneic CAR T cells outperform CRISPR/Cas9 nuclease-engineered T cells.

Proc Natl Acad Sci U S A. 2025-5-20

[3]
An aptamer-mediated base editing platform for simultaneous knockin and multiple gene knockout for allogeneic CAR-T cells generation.

Mol Ther. 2024-8-7

[4]
Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors.

Nat Commun. 2019-11-19

[5]
Protocol for Efficient Generation of Chimeric Antigen Receptor T Cells with Multiplexed Gene Silencing by Epigenome Editing.

Methods Mol Biol. 2024

[6]
Expanding the editable genome and CRISPR-Cas9 versatility using DNA cutting-free gene targeting based on in trans paired nicking.

Nucleic Acids Res. 2020-1-24

[7]
A versatile system for rapid multiplex genome-edited CAR T cell generation.

Oncotarget. 2017-3-7

[8]
Review: Sustainable Clinical Development of CAR-T Cells - Switching From Viral Transduction Towards CRISPR-Cas Gene Editing.

Front Immunol. 2022

[9]
Genome Editing in CAR-T Cells Using CRISPR/Cas9 Technology.

Methods Mol Biol. 2024

[10]
INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels.

Nucleic Acids Res. 2020-12-2

引用本文的文献

[1]
Integration of humanized ROBO1 CAR in PD-1 locus in natural killer cells delivers synergistic tumor-killing effect against non-small cell lung cancer.

Cancer Gene Ther. 2025-9-5

[2]
Recent advances in universal chimeric antigen receptor T cell therapy.

J Hematol Oncol. 2025-8-29

[3]
CRISPR tools for T cells: targeting the genome, epigenome, and transcriptome.

Trends Cancer. 2025-8-28

[4]
Precise, predictable genome integrations by deep-learning-assisted design of microhomology-based templates.

Nat Biotechnol. 2025-8-12

[5]
A Singular Base Editing Platform for Polyfunctional Multiplex Engineering of Immune Cells.

bioRxiv. 2025-7-16

[6]
Enhancing the potency of CAR-T cells against solid tumors through transcription factor engineering.

JCI Insight. 2025-7-22

[7]
Improving resolution with single-cell detection of CRISPR off-target events.

Mol Ther Methods Clin Dev. 2025-6-5

[8]
Author Correction: Combining different CRISPR nucleases for simultaneous knock-in and base editing prevents translocations in multiplex-edited CAR T cells.

Genome Biol. 2025-3-26

[9]
Expanding the horizon of CAR T cell therapy: from cancer treatment to autoimmune diseases and beyond.

Front Immunol. 2025-2-19

[10]
Safe CAR-T: shedding light on CAR-related T-cell malignancies.

EMBO Mol Med. 2025-4

本文引用的文献

[1]
Prediction of designer-recombinases for DNA editing with generative deep learning.

Nat Commun. 2022-12-27

[2]
Detection of chromosomal alteration after infusion of gene-edited allogeneic CAR T cells.

Mol Ther. 2023-3-1

[3]
Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases.

Nat Biotechnol. 2023-4

[4]
Efficient Homology-Directed Repair with Circular Single-Stranded DNA Donors.

CRISPR J. 2022-10

[5]
High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails.

Nat Biotechnol. 2023-4

[6]
RASA2 ablation in T cells boosts antigen sensitivity and long-term function.

Nature. 2022-9

[7]
Review: Sustainable Clinical Development of CAR-T Cells - Switching From Viral Transduction Towards CRISPR-Cas Gene Editing.

Front Immunol. 2022

[8]
Frequent aneuploidy in primary human T cells after CRISPR-Cas9 cleavage.

Nat Biotechnol. 2022-12

[9]
Endowing universal CAR T-cell with immune-evasive properties using TALEN-gene editing.

Nat Commun. 2022-6-30

[10]
Precise CRISPR-Cas-mediated gene repair with minimal off-target and unintended on-target mutations in human hematopoietic stem cells.

Sci Adv. 2022-6-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索