使用基于智能手机的深度学习系统早期检测幼儿视力障碍。
Early detection of visual impairment in young children using a smartphone-based deep learning system.
作者信息
Chen Wenben, Li Ruiyang, Yu Qinji, Xu Andi, Feng Yile, Wang Ruixin, Zhao Lanqin, Lin Zhenzhe, Yang Yahan, Lin Duoru, Wu Xiaohang, Chen Jingjing, Liu Zhenzhen, Wu Yuxuan, Dang Kang, Qiu Kexin, Wang Zilong, Zhou Ziheng, Liu Dong, Wu Qianni, Li Mingyuan, Xiang Yifan, Li Xiaoyan, Lin Zhuoling, Zeng Danqi, Huang Yunjian, Mo Silang, Huang Xiucheng, Sun Shulin, Hu Jianmin, Zhao Jun, Wei Meirong, Hu Shoulong, Chen Liang, Dai Bingfa, Yang Huasheng, Huang Danping, Lin Xiaoming, Liang Lingyi, Ding Xiaoyan, Yang Yangfan, Wu Pengsen, Zheng Feihui, Stanojcic Nick, Li Ji-Peng Olivia, Cheung Carol Y, Long Erping, Chen Chuan, Zhu Yi, Yu-Wai-Man Patrick, Wang Ruixuan, Zheng Wei-Shi, Ding Xiaowei, Lin Haotian
机构信息
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China.
出版信息
Nat Med. 2023 Feb;29(2):493-503. doi: 10.1038/s41591-022-02180-9. Epub 2023 Jan 26.
Early detection of visual impairment is crucial but is frequently missed in young children, who are capable of only limited cooperation with standard vision tests. Although certain features of visually impaired children, such as facial appearance and ocular movements, can assist ophthalmic practice, applying these features to real-world screening remains challenging. Here, we present a mobile health (mHealth) system, the smartphone-based Apollo Infant Sight (AIS), which identifies visually impaired children with any of 16 ophthalmic disorders by recording and analyzing their gazing behaviors and facial features under visual stimuli. Videos from 3,652 children (≤48 months in age; 54.5% boys) were prospectively collected to develop and validate this system. For detecting visual impairment, AIS achieved an area under the receiver operating curve (AUC) of 0.940 in an internal validation set and an AUC of 0.843 in an external validation set collected in multiple ophthalmology clinics across China. In a further test of AIS for at-home implementation by untrained parents or caregivers using their smartphones, the system was able to adapt to different testing conditions and achieved an AUC of 0.859. This mHealth system has the potential to be used by healthcare professionals, parents and caregivers for identifying young children with visual impairment across a wide range of ophthalmic disorders.
早期发现视力障碍至关重要,但在幼儿中却常常被忽视,因为他们只能有限地配合标准视力测试。尽管视力障碍儿童的某些特征,如面部外观和眼球运动,有助于眼科诊疗,但将这些特征应用于实际筛查仍具有挑战性。在此,我们展示了一种移动健康(mHealth)系统,即基于智能手机的阿波罗婴儿视力检测系统(AIS),该系统通过记录和分析视觉刺激下儿童的注视行为和面部特征,识别患有16种眼科疾病中任何一种的视力障碍儿童。我们前瞻性地收集了3652名儿童(年龄≤48个月;54.5%为男孩)的视频,用于开发和验证该系统。对于视力障碍检测,AIS在内部验证集中的受试者工作特征曲线下面积(AUC)为0.940,在中国多家眼科诊所收集的外部验证集中的AUC为0.843。在由未经培训的父母或照顾者使用智能手机在家中实施的AIS进一步测试中,该系统能够适应不同的测试条件,AUC为0.859。这种移动健康系统有潜力被医疗保健专业人员、父母和照顾者用于识别患有多种眼科疾病的视力障碍幼儿。