Suppr超能文献

基于视网膜图像的深度学习进行疾病相关视力障碍转诊:概念验证、模型开发研究。

Referral for disease-related visual impairment using retinal photograph-based deep learning: a proof-of-concept, model development study.

机构信息

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Duke-NUS Medical School, Singapore.

Institute of High Performance Computing, A*STAR, Singapore.

出版信息

Lancet Digit Health. 2021 Jan;3(1):e29-e40. doi: 10.1016/S2589-7500(20)30271-5.

Abstract

BACKGROUND

In current approaches to vision screening in the community, a simple and efficient process is needed to identify individuals who should be referred to tertiary eye care centres for vision loss related to eye diseases. The emergence of deep learning technology offers new opportunities to revolutionise this clinical referral pathway. We aimed to assess the performance of a newly developed deep learning algorithm for detection of disease-related visual impairment.

METHODS

In this proof-of-concept study, using retinal fundus images from 15 175 eyes with complete data related to best-corrected visual acuity or pinhole visual acuity from the Singapore Epidemiology of Eye Diseases Study, we first developed a single-modality deep learning algorithm based on retinal photographs alone for detection of any disease-related visual impairment (defined as eyes from patients with major eye diseases and best-corrected visual acuity of <20/40), and moderate or worse disease-related visual impairment (eyes with disease and best-corrected visual acuity of <20/60). After development of the algorithm, we tested it internally, using a new set of 3803 eyes from the Singapore Epidemiology of Eye Diseases Study. We then tested it externally using three population-based studies (the Beijing Eye study [6239 eyes], Central India Eye and Medical study [6526 eyes], and Blue Mountains Eye Study [2002 eyes]), and two clinical studies (the Chinese University of Hong Kong's Sight Threatening Diabetic Retinopathy study [971 eyes] and the Outram Polyclinic Study [1225 eyes]). The algorithm's performance in each dataset was assessed on the basis of the area under the receiver operating characteristic curve (AUC).

FINDINGS

In the internal test dataset, the AUC for detection of any disease-related visual impairment was 94·2% (95% CI 93·0-95·3; sensitivity 90·7% [87·0-93·6]; specificity 86·8% [85·6-87·9]). The AUC for moderate or worse disease-related visual impairment was 93·9% (95% CI 92·2-95·6; sensitivity 94·6% [89·6-97·6]; specificity 81·3% [80·0-82·5]). Across the five external test datasets (16 993 eyes), the algorithm achieved AUCs ranging between 86·6% (83·4-89·7; sensitivity 87·5% [80·7-92·5]; specificity 70·0% [66·7-73·1]) and 93·6% (92·4-94·8; sensitivity 87·8% [84·1-90·9]; specificity 87·1% [86·2-88·0]) for any disease-related visual impairment, and the AUCs for moderate or worse disease-related visual impairment ranged between 85·9% (81·8-90·1; sensitivity 84·7% [73·0-92·8]; specificity 74·4% [71·4-77·2]) and 93·5% (91·7-95·3; sensitivity 90·3% [84·2-94·6]; specificity 84·2% [83·2-85·1]).

INTERPRETATION

This proof-of-concept study shows the potential of a single-modality, function-focused tool in identifying visual impairment related to major eye diseases, providing more timely and pinpointed referral of patients with disease-related visual impairment from the community to tertiary eye hospitals.

FUNDING

National Medical Research Council, Singapore.

摘要

背景

在当前社区视力筛查的方法中,需要一种简单有效的方法来识别那些应该转诊到三级眼科中心进行眼病相关视力损失的患者。深度学习技术的出现为这一临床转诊途径的改革提供了新的机会。我们旨在评估一种新开发的深度学习算法在检测与疾病相关的视力障碍方面的性能。

方法

在这项概念验证研究中,我们使用来自新加坡眼病流行病学研究的 15175 只眼睛的完整视网膜眼底图像数据,这些数据与最佳矫正视力或小孔视力相关,我们首先基于仅视网膜照片开发了一种单一模式的深度学习算法,用于检测任何与疾病相关的视力障碍(定义为患有主要眼病且最佳矫正视力<20/40 的患者的眼睛)和中度或更差的与疾病相关的视力障碍(患有疾病且最佳矫正视力<20/60 的眼睛)。在开发算法后,我们使用来自新加坡眼病流行病学研究的一组新的 3803 只眼睛对其进行内部测试。然后,我们使用三个基于人群的研究(北京眼病研究[6239 只眼睛]、印度中部眼和医学研究[6526 只眼睛]和蓝山眼研究[2002 只眼睛])以及两个临床研究(香港中文大学的威胁性糖尿病视网膜病变研究[971 只眼睛]和乌节诊所研究[1225 只眼睛])对其进行外部测试。该算法在每个数据集上的性能是基于接受者操作特征曲线(AUC)下的面积来评估的。

发现

在内部测试数据集上,任何与疾病相关的视力障碍的 AUC 为 94.2%(95%CI 93.0-95.3;敏感性 90.7%[87.0-93.6];特异性 86.8%[85.6-87.9])。中度或更差的与疾病相关的视力障碍的 AUC 为 93.9%(95%CI 92.2-95.6;敏感性 94.6%[89.6-97.6];特异性 81.3%[80.0-82.5])。在五个外部测试数据集(16993 只眼睛)中,该算法的 AUC 范围在 86.6%(83.4-89.7;敏感性 87.5%[80.7-92.5];特异性 70.0%[66.7-73.1])到 93.6%(92.4-94.8;敏感性 87.8%[84.1-90.9];特异性 87.1%[86.2-88.0])之间,用于任何与疾病相关的视力障碍,中度或更差的与疾病相关的视力障碍的 AUC 范围在 85.9%(81.8-90.1;敏感性 84.7%[73.0-92.8];特异性 74.4%[71.4-77.2])到 93.5%(91.7-95.3;敏感性 90.3%[84.2-94.6];特异性 84.2%[83.2-85.1])之间。

解释

这项概念验证研究表明,单一模式、注重功能的工具在识别与主要眼病相关的视力障碍方面具有潜力,可以更及时、更准确地将社区中与疾病相关的视力障碍患者转诊到三级眼科医院。

资金

新加坡国家医学研究理事会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验