Suppr超能文献

一种通过测量视网膜血管口径评估心血管疾病风险的深度学习系统。

A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre.

机构信息

Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore.

Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.

出版信息

Nat Biomed Eng. 2021 Jun;5(6):498-508. doi: 10.1038/s41551-020-00626-4. Epub 2020 Oct 12.

Abstract

Retinal blood vessels provide information on the risk of cardiovascular disease (CVD). Here, we report the development and validation of deep-learning models for the automated measurement of retinal-vessel calibre in retinal photographs, using diverse multiethnic multicountry datasets that comprise more than 70,000 images. Retinal-vessel calibre measured by the models and by expert human graders showed high agreement, with overall intraclass correlation coefficients of between 0.82 and 0.95. The models performed comparably to or better than expert graders in associations between measurements of retinal-vessel calibre and CVD risk factors, including blood pressure, body-mass index, total cholesterol and glycated-haemoglobin levels. In retrospectively measured prospective datasets from a population-based study, baseline measurements performed by the deep-learning system were associated with incident CVD. Our findings motivate the development of clinically applicable explainable end-to-end deep-learning systems for the prediction of CVD on the basis of the features of retinal vessels in retinal photographs.

摘要

视网膜血管提供了心血管疾病 (CVD) 风险的信息。在这里,我们报告了使用包含超过 70000 张图像的多种多民族多国家数据集,开发和验证用于自动测量视网膜照片中视网膜血管口径的深度学习模型。模型和专家人工分级器测量的视网膜血管口径具有高度一致性,总体内类相关系数在 0.82 到 0.95 之间。在视网膜血管口径测量值与 CVD 风险因素(包括血压、体重指数、总胆固醇和糖化血红蛋白水平)之间的关联中,模型的表现与专家分级器相当或优于专家分级器。在基于人群的研究中回顾性测量的前瞻性数据集,深度学习系统的基线测量与 CVD 事件相关。我们的研究结果为开发基于视网膜照片中视网膜血管特征预测 CVD 的临床适用的可解释端到端深度学习系统提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验