Suppr超能文献

基于光谱 CT 定量参数和典型影像学特征的列线图鉴别甲状腺微小结节的良恶性。

Nomogram based on spectral CT quantitative parameters and typical radiological features for distinguishing benign from malignant thyroid micro-nodules.

机构信息

Department of Radiology, Chongqing General Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China.

Philips Healthcare, Chengdu branch, Chengdu, China.

出版信息

Cancer Imaging. 2023 Jan 26;23(1):13. doi: 10.1186/s40644-023-00525-2.

Abstract

PURPOSE

To analyse the predictive effect of a nomogram combining dual-layer spectral computed tomography (DSCT) quantitative parameters with typical radiological features in distinguishing benign micro-nodule from thyroid microcarcinoma (TMC).

METHODS

Data from 342 instances with thyroid micro-nodules (≤1 cm) who underwent DSCT (benign group: n = 170; malignant group: n = 172) were reviewed. Typical radiological features including micro-calcification and enhanced blurring, and DSCT quantitative parameters including attenuation on virtual monoenergetic images (40 keV, 70 keV and 100 keV), the slope of the spectral HU curve (λHU), normalized iodine concentration (NIC), and normalized effective atomic number (NZeff) in the arterial phase (AP) and venous phase (VP), were measured and compared between the benign and malignant groups. The receiver operating characteristic (ROC) curve was used to assess the diagnostic performance of significant quantitative DSCT parameters or the models combining DSCT parameters respectively and typical radiological features based on multivariate logistic regression (LR) analysis. A nomogram was developed using predictors with the highest diagnostic performance in the above model, as determined by multivariate LR analysis.

RESULTS

The DSCT parameter APλHU showed the greatest diagnostic efficiency in identifying patients with TMC, with an area under the ROC curve (AUC) of 0.829, a sensitivity and specificity of 0.738 and 0.753, respectively. Then, APλHU was combined with the two radiological features to construct the DSCT-Radiological nomogram, which had an AUC of 0.858, a sensitivity of 0.791 and a specificity of 0.800. The calibration curve of the nomogram demonstrated that the prediction result was in good agreement with the actual observation. The decision curve revealed that the nomogram can result in a greater net benefit than the all/none-intervention strategy for all threshold probabilities.

CONCLUSION

As a valid and visual noninvasive prediction tool, the DSCT-Radiological nomogram incorporating DSCT quantitative parameters and radiological features shows favourable predictive efficiency for identifying benign and malignant thyroid micro-nodules.

摘要

目的

分析联合双层光谱 CT(DSCT)定量参数与典型影像学特征的列线图在鉴别良性微小结节与甲状腺微小癌(TMC)中的预测效果。

方法

回顾性分析 342 例甲状腺微小结节(≤1cm)患者的 DSCT 资料(良性组:n=170;恶性组:n=172)。比较两组微钙化、增强晕征等典型影像学特征,以及 40keV、70keV、100keV 虚拟单能量图像衰减值、动脉期(AP)和静脉期(VP)斜率(λHU)、碘标准化浓度(NIC)、有效原子序数标准化(NZeff)等 DSCT 定量参数。采用多因素 logistic 回归分析筛选有意义的 DSCT 定量参数及模型,通过受试者工作特征(ROC)曲线评估其诊断效能。进一步基于多因素 LR 分析构建包含预测效能最高的参数或模型的列线图。

结果

APλHU 对 TMC 患者的诊断效能最高,ROC 曲线下面积(AUC)为 0.829,灵敏度和特异度分别为 0.738、0.753。进一步将 APλHU 与两种影像学特征联合构建 DSCT-影像学列线图,AUC 为 0.858,灵敏度为 0.791,特异度为 0.800。校准曲线表明该列线图预测结果与实际观察值一致性较好。决策曲线分析表明,该列线图在各阈值概率下均能获得比全或无干预策略更大的净获益。

结论

DSCT-影像学列线图作为一种有效的可视化无创预测工具,结合了 DSCT 定量参数和影像学特征,对鉴别甲状腺良恶性微小结节具有良好的预测效能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c335/9878766/fafcaa5536fc/40644_2023_525_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验