文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

将基于石墨烯的材料的物理化学性质与分子吸附、结构及细胞命运联系起来。

Linking graphene-based material physicochemical properties with molecular adsorption, structure and cell fate.

作者信息

Kumar Sachin, Parekh Sapun H

机构信息

Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Rd., Austin, TX, 78712, USA.

Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, DE, USA.

出版信息

Commun Chem. 2020 Jan 20;3(1):8. doi: 10.1038/s42004-019-0254-9.


DOI:10.1038/s42004-019-0254-9
PMID:36703309
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9814659/
Abstract

Graphene, an allotrope of carbon, consists of a single layer of carbon atoms with uniquely tuneable properties. As such, graphene-based materials (GBMs) have gained interest for tissue engineering applications. GBMs are often discussed in the context of how different physicochemical properties affect cell physiology, without explicitly considering the impact of adsorbed proteins. Establishing a relationship between graphene properties, adsorbed proteins, and cell response is necessary as these proteins provide the surface upon which cells attach and grow. This review highlights the molecular adsorption of proteins on different GBMs, protein structural changes, and the connection to cellular function.

摘要

石墨烯是碳的一种同素异形体,由具有独特可调性质的单层碳原子组成。因此,基于石墨烯的材料(GBMs)在组织工程应用中受到了关注。人们在讨论GBMs时,通常关注不同的物理化学性质如何影响细胞生理,而没有明确考虑吸附蛋白的影响。由于这些蛋白提供了细胞附着和生长的表面,因此有必要建立石墨烯性质、吸附蛋白和细胞反应之间的关系。本综述重点介绍了蛋白在不同GBMs上的分子吸附、蛋白结构变化以及与细胞功能的联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/5475dc72e590/42004_2019_254_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/5e201286d231/42004_2019_254_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/8c489a8fa01a/42004_2019_254_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/cd6afda9a83c/42004_2019_254_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/4c6dbae92338/42004_2019_254_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/a1b535ae22dc/42004_2019_254_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/fc8cb220afba/42004_2019_254_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/5475dc72e590/42004_2019_254_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/5e201286d231/42004_2019_254_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/8c489a8fa01a/42004_2019_254_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/cd6afda9a83c/42004_2019_254_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/4c6dbae92338/42004_2019_254_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/a1b535ae22dc/42004_2019_254_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/fc8cb220afba/42004_2019_254_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0870/9814659/5475dc72e590/42004_2019_254_Fig7_HTML.jpg

相似文献

[1]
Linking graphene-based material physicochemical properties with molecular adsorption, structure and cell fate.

Commun Chem. 2020-1-20

[2]
Molecular Control of Interfacial Fibronectin Structure on Graphene Oxide Steers Cell Fate.

ACS Appl Mater Interfaces. 2021-1-20

[3]
Graphene Surfaces Interaction with Proteins, Bacteria, Mammalian Cells, and Blood Constituents: The Impact of Graphene Platelet Oxidation and Thickness.

ACS Appl Mater Interfaces. 2020-5-6

[4]
Preparation, properties, applications and outlook of graphene-based materials in biomedical field: a comprehensive review.

J Biomater Sci Polym Ed. 2023-6

[5]
Graphene-Based Material-Mediated Immunomodulation in Tissue Engineering and Regeneration: Mechanism and Significance.

ACS Nano. 2023-10-10

[6]
Environmental biotechnology and the involving biological process using graphene-based biocompatible material.

Chemosphere. 2023-10

[7]
Graphene Incorporated Electrospun Nanofiber for Electrochemical Sensing and Biomedical Applications: A Critical Review.

Sensors (Basel). 2022-11-9

[8]
Graphene-based materials: fabrication and application for adsorption in analytical chemistry.

J Chromatogr A. 2014-8-15

[9]
Poly(2-hydroxyethyl methacrylate) hydrogels containing graphene-based materials for blood-contacting applications: From soft inert to strong degradable material.

Acta Biomater. 2023-7-1

[10]
Me-graphane: tailoring the structural and electronic properties of Me-graphene hydrogenation.

Phys Chem Chem Phys. 2021-4-22

引用本文的文献

[1]
Colloidal few layered graphene-tannic acid preserves the biocompatibility of periodontal ligament cells.

Beilstein J Nanotechnol. 2025-5-20

[2]
First-Principles Calculations for Glycine Adsorption Dynamics and Surface-Enhanced Raman Spectroscopy on Diamond Surfaces.

Nanomaterials (Basel). 2025-3-27

[3]
Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application.

Int J Mol Sci. 2024-9-26

[4]
Advancing Albumin Isolation from Human Serum with Graphene Oxide and Derivatives: A Novel Approach for Clinical Applications.

ACS Omega. 2024-9-20

[5]
Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors.

Discov Nano. 2024-6-17

[6]
Graphene in 3D Bioprinting.

J Funct Biomater. 2024-3-25

[7]
Exploring the Effects of Graphene-Based Nanoparticles on Early Salmonids Cardiorespiratory Responses, Swimming and Nesting Behavior.

J Xenobiot. 2024-4-14

[8]
Impact of the Reduction Time-Dependent Electrical Conductivity of Graphene Nanoplatelet-Coated Aligned Silk Scaffolds on Electrically Stimulated Axonal Growth.

ACS Appl Bio Mater. 2024-4-15

[9]
Peripheral nerve injury repair by electrical stimulation combined with graphene-based scaffolds.

Front Bioeng Biotechnol. 2024-2-28

[10]
Porous Laser-Scribed Graphene Electrodes Modified with Zwitterionic Moieties: A Strategy for Antibiofouling and Low-Impedance Interfaces.

ACS Appl Mater Interfaces. 2024-1-31

本文引用的文献

[1]
Neurogenic differentiation of adipose derived stem cells on graphene-based mat.

Mater Sci Eng C Mater Biol Appl. 2018-5-5

[2]
The optimization and production of stable homogeneous amine enriched surfaces with characterized nanotopographical properties for enhanced osteoinduction of mesenchymal stem cells.

J Biomed Mater Res A. 2018-3-25

[3]
When stem cells meet graphene: Opportunities and challenges in regenerative medicine.

Biomaterials. 2017-10-4

[4]
Strong Binding of Platelet Integrin αIIbβ3 to Fibrin Clots: Potential Target to Destabilize Thrombi.

Sci Rep. 2017-10-11

[5]
Antibacterial ability and hemocompatibility of graphene functionalized germanium.

Sci Rep. 2016-11-23

[6]
Comprehensive Review on the Use of Graphene-Based Substrates for Regenerative Medicine and Biomedical Devices.

ACS Appl Mater Interfaces. 2016-10-12

[7]
Ultrastrong trapping of VEGF by graphene oxide: Anti-angiogenesis application.

Biomaterials. 2016-9-13

[8]
Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights.

Adv Drug Deliv Rev. 2016-8-26

[9]
Graphene-based materials for tissue engineering.

Adv Drug Deliv Rev. 2016-10-1

[10]
Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration.

Nanoscale. 2016-3-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索